scholarly journals Molecular and ultrastructure study of tight junction during experimental Entamoeba spp. infection

Author(s):  
Athraa A AL-Hilfi ◽  
Maha Khalil Al-Malak ◽  
Shereen Jawad Al-Ali ◽  
Muslim Abd-ulrahman Al-Tomah
Author(s):  
A.J. Verkleij

Freeze-fracturing splits membranes into two helves, thus allowing an examination of the membrane interior. The 5-10 rm particles visible on both monolayers are widely assumed to be proteinaceous in nature. Most membranes do not reveal impressions complementary to particles on the opposite fracture face, if the membranes are fractured under conditions without etching. Even if it is considered that shadowing, contamination or fracturing itself might obscure complementary pits', there is no satisfactory explanation why under similar physical circimstances matching halves of other membranes can be visualized. A prominent example of uncomplementarity is found in the erythrocyte manbrane. It is wall established that band 3 protein and possibly glycophorin represents these nonccmplanentary particles. On the other hand a number of membrane types show pits opposite the particles. Scme well known examples are the ";gap junction',"; tight junction, the luminal membrane of the bladder epithelial cells and the outer membrane of Escherichia coli.


2001 ◽  
Vol 120 (5) ◽  
pp. A110-A110
Author(s):  
A HOPKINS ◽  
S WALS ◽  
P VERKADE ◽  
P BOQUET ◽  
A NUSRAT

2005 ◽  
Vol 43 (05) ◽  
Author(s):  
Cs Páska ◽  
E Orbán ◽  
A Kiss ◽  
Zs Schaff ◽  
A Szijjártó ◽  
...  

2017 ◽  
Vol 95 (3) ◽  
pp. 1313 ◽  
Author(s):  
L. Zhang ◽  
L. F. Schütz ◽  
C. L. Robinson ◽  
M. L. Totty ◽  
L. J. Spicer

Sign in / Sign up

Export Citation Format

Share Document