The Microhardness and Microstructural Changes of Mechanically Affected Zone by Cold Pressure Welding in Aluminum Rod

2014 ◽  
Vol 52 (9) ◽  
pp. 721-729
Author(s):  
Seul Gi Hwang ◽  
Jeong Hyun Jo ◽  
Shang shu Kim ◽  
Young ho Lee ◽  
Jae Kwan Ku
1959 ◽  
Vol 28 (5) ◽  
pp. 331-338
Author(s):  
T. Saito ◽  
K. Yamaji

Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 237 ◽  
Author(s):  
Yanni Wei ◽  
Hui Li ◽  
Fu Sun ◽  
Juntao Zou

The Cu/Al composites conductive head is widely used in hydrometallurgy as the core component of cathode plate. Its conductive properties directly affect the power consumption, and the bonding strength and corrosion resistance determine the conductive head service life. The Cu/Al conductive head prepared by explosion welding, cold pressure welding, and solid-liquid casting methods were investigated in this paper. The interface microstructure and compositions were examined by scanning electron microscope and X-ray energy dispersive spectrometry. The bonding strength, interface conductivity, and the corrosion resistance of three types of joints were characterized. The Cu/Al bonding interface produced by explosive welding presented a wavy-like morphology with typical defects and many of brittle compounds. A micro-interlocking effect was caused by the sawtooth structures on the cold pressure welding interface, and there was no typical metallurgical reaction on the interface. The Cu/Al bonding interface prepared by solid-liquid casting consisted mainly of an Al-Cu eutectic microstructure (Al2Cu+Al) and partial white slag inclusion. The thickness of the interface transition layer was about 200–250 µm, with defects such as holes, cracks, and unwelded areas. The conductivity, interfacial bonding strength, and corrosion resistance of the conductive head prepared by explosive welding were superior to the other two.


CIRP Annals ◽  
1992 ◽  
Vol 41 (1) ◽  
pp. 293-297 ◽  
Author(s):  
W. Zhang ◽  
N. Bay ◽  
T. Wanheim

2013 ◽  
Vol 800 ◽  
pp. 290-293
Author(s):  
Hong Yang ◽  
Nian Suo Xie ◽  
Qiang Liu

The characteristics of welding process for aluminum-copper dissimilar material such as friction welding, explosive welding, brazing and cold pressure welding are discussed firstly in this paper. Then the welding technology and its application for aluminum-copper dissimilar material are summarized. Finally, the outlook is analyzed for the welding process of aluminum-copper dissimilar material.


2012 ◽  
Vol 217-219 ◽  
pp. 395-399
Author(s):  
Guo Ming Cui ◽  
Xing Xia Li ◽  
Jian Min Zeng

Bimetal of high-tin aluminum alloy and steel was fabricated by cold-rolling process; microstructure, bonding strength and bonding mechanism for bonding interface of the bimetal were investigated under cold-rolling and recrystallization annealing state, respectively. Experimental results indicate that tin phase of bimetal in cold-rolling state shows a belt type distribution, however, it, in recrystallization annealing state, is uniformly distributed just like some “isolated islands”. A well bonding interface, between layers of high–tin aluminum alloy and pure aluminum, can be obtained, and it is difficult to distinguish one layer from the other; but the interface, between layers of low-carbon steel back and pure aluminum, is clear and uneven. And meanwhile, bonding mechanism of bimetal interface, in cold-rolling state, is cold pressure welding and mechanical occluding, But it, in recrystallization annealing state, is cold pressure welding, mechanical occluding, and metallurgic bonding. After recrystallization annealing, at 350°C for 2h,the bonding strength of bimetal approaches to 92.4MPa, which is about 26% higher than that of cold-rolling state.


Sign in / Sign up

Export Citation Format

Share Document