The stability of heavy nuclei and the limit of the periodic system of elements

1970 ◽  
Vol 100 (1) ◽  
pp. 45-92 ◽  
Author(s):  
G.N. Flerov ◽  
V.A. Druin ◽  
A.A. Pleve
1970 ◽  
Vol 13 (1) ◽  
pp. 24-50 ◽  
Author(s):  
G N Flerov ◽  
V A Druin ◽  
A A Pleve

2020 ◽  
Vol 34 (31) ◽  
pp. 2050358
Author(s):  
Natalia N. Konobeeva ◽  
Eduard G. Fedorov ◽  
Mikhail B. Belonenko

In this paper, we study the propagation of extremely short electromagnetic pulses in a medium with zig–zag carbon nanotubes taking into account pumping and nonlinear absorption introduced phenomenologically. Based on Maxwell’s equations, we obtain an effective equation for the vector potential of the electromagnetic field, which takes into account the dissipation of the pulse field under the conditions of the piezoelectric effect associated with the vibrations of heavy nuclei of the medium, pumping by an external electromagnetic wave, and nonlinear absorption of carbon nanotubes. We demonstrate the stability of the electromagnetic pulse shape on a time scale that is significantly longer than the pulse duration but not exceeding the relaxation time.


2020 ◽  
Vol 29 (05) ◽  
pp. 2050026
Author(s):  
Keivan Darooyi Divshali ◽  
Mohammad Reza Shojaei

[Formula: see text]C is a beta decay isotope, its beta decay is very slow reflecting the stability of this nucleus and emitted from medium and heavy mass nuclei. The [Formula: see text]C result is in excellent agreement with the favored ground-state-to-ground-state transition according to the cluster model of Blendowske et al. We study nuclear structure properties of spin-1/2 heavy nuclei in the relativistic core-cluster model, that its cluster is [Formula: see text]C. According to this model for spin-1/2 heavy nuclei and for obtaining its wave function, we solve the Dirac equation with the new phenomenological potential by parametric Nikiforov–Uvarov method and then calculate the binding energy and charge radius.


Author(s):  
Ashu Sharma ◽  
S. C. Sinha

Parametrically excited linear systems with oscillatory coefficients have been generally modeled by Mathieu or Hill equations (periodic coefficients) because their stability and response can be determined by Floquét theory. However, in many cases, the parametric excitation is not periodic but consists of frequencies that are incommensurate, making them quasi-periodic. Unfortunately, there is no complete theory for linear dynamic systems with quasi-periodic coefficients. Motivated by this fact, in this work, an approximate approach has been proposed to determine the stability and response of quasi-periodic systems. It is suggested here that a quasi-periodic system may be replaced by a periodic system with an appropriate large principal period and thus making it suitable for an application of the Floquét theory. Based on this premise, a systematic approach has been developed and applied to three typical quasi-periodic systems. The approximate boundaries in stability charts obtained from the proposed method are very close to the exact boundaries of original quasi-periodic equations computed numerically using maximal Lyapunov exponents. Further, the frequency spectra of solutions generated near approximate and exact boundaries are found to be almost identical ensuring a high degree of accuracy. In addition, state transition matrices (STMs) are also computed symbolically in terms of system parameters using Chebyshev polynomials and Picard iteration method. Stability diagrams based on this approach are found to be in excellent agreement with those obtained from numerical methods. The coefficients of parametric excitation terms are not necessarily small in all cases.


2006 ◽  
Vol 15 (07) ◽  
pp. 1613-1624
Author(s):  
H. F. ZHANG ◽  
J. Q. LI ◽  
W. ZUO ◽  
X. H. ZHOU ◽  
Z. G. GAN ◽  
...  

In the framework of the relativistic mean field (RMF) theory, the stability and ground properties of super-heavy nuclei are discussed. Our study indicated that the current synthesized super-heavy nuclei (SHN) actually appear in the stable region, and adding more neutrons will not increase their stability. The study of nuclei from 287115 α decay chain showed that they are usually deformed, the magnitudes of their shell gaps are much smaller than those of nuclei before the actinium region, so that the shell effect is weakened, and SHN are usually not stable. A common phenomenon is that the Fermi surface of the proton is close to the continuum, the resonant continuums exist in SHN, because the SHN are usually neutron deficient. Although bulk properties can be described by the RMF+BCS theory, further study is needed. Density dependent delta pairing interaction can improve the treatment of the pairing and thus improve the level distribution in the continuum.


2011 ◽  
Vol 20 (10) ◽  
pp. 1995-2002 ◽  
Author(s):  
MICHAEL ROTONDO ◽  
REMO RUFFINI ◽  
SHE-SHENG XUE ◽  
VLADIMIR POPOV

In a unified treatment we extrapolate results for neutral atoms with heavy nuclei to nuclear matter cores of stellar dimensions with mass numbers A ≈ (m Planck /mn)3 ~ 1057. We give explicit analytic solutions for the relativistic Thomas–Fermi equation of Nn neutrons, Np protons and Ne electrons in beta equilibrium, fulfilling global charge neutrality, with Np = Ne. We give explicit expressions for the physical parameters including the Coulomb and the surface energies and we study as well the stability of such configurations. Analogous to heavy nuclei these macroscopic cores exhibit an overcritical electric field near their surface.


Sign in / Sign up

Export Citation Format

Share Document