On the retrograde motion of a rolling disk

2017 ◽  
Vol 187 (09) ◽  
pp. 1003-1006 ◽  
Author(s):  
Aleksei V. Borisov ◽  
Aleksandr A. Kilin ◽  
Yurii L. Karavaev
Keyword(s):  
2019 ◽  
Vol 219 (2) ◽  
pp. 975-994 ◽  
Author(s):  
Gabriel Gribler ◽  
T Dylan Mikesell

SUMMARY Estimating shear wave velocity with depth from Rayleigh-wave dispersion data is limited by the accuracy of fundamental and higher mode identification and characterization. In many cases, the fundamental mode signal propagates exclusively in retrograde motion, while higher modes propagate in prograde motion. It has previously been shown that differences in particle motion can be identified with multicomponent recordings and used to separate prograde from retrograde signals. Here we explore the domain of existence of prograde motion of the fundamental mode, arising from a combination of two conditions: (1) a shallow, high-impedance contrast and (2) a high Poisson ratio material. We present solutions to isolate fundamental and higher mode signals using multicomponent recordings. Previously, a time-domain polarity mute was used with limited success due to the overlap in the time domain of fundamental and higher mode signals at low frequencies. We present several new approaches to overcome this low-frequency obstacle, all of which utilize the different particle motions of retrograde and prograde signals. First, the Hilbert transform is used to phase shift one component by 90° prior to summation or subtraction of the other component. This enhances either retrograde or prograde motion and can increase the mode amplitude. Secondly, we present a new time–frequency domain polarity mute to separate retrograde and prograde signals. We demonstrate these methods with synthetic and field data to highlight the improvements to dispersion images and the resulting dispersion curve extraction.


1940 ◽  
Vol 30 (2) ◽  
pp. 139-178
Author(s):  
J. Emilio Ramirez

Summary Over a period of six months, from July to December, 1938, an investigation on microseismic waves has been carried out in the Department of Geophysics of St. Louis University. Four electromagnetic seismographs, specially designed for recording microseisms, were installed in the city of St. Louis in the form of a triangular network. Two of these were E-W components, one at the St. Louis University Gymnasium and the other 6.4 km. due west at Washington University. The other two were arranged as N-S components, one at the St. Louis University Gymnasium and one 6.3 km. due south at Maryville College. The speed of the photographic paper was 60 mm/min., and time signals were recorded automatically and simultaneously on each paper from the same clock every minute and at shorter intervals from a special pendulum and “tickler” combination by means of telephone wires. The results have demonstrated beyond doubt that microseismic waves are traveling and not stationary waves. The same waves have been identified at each one of the stations of the network, and also at Florissant, 21.8 km. away from St. Louis University. The speed of microseismic waves at St. Louis was determined from several storms of microseisms and it was found to be 2.67±0.03 km/sec. The direction of microseisms was also established for most of the storms and it was found that about 80 per cent of incoming microseisms at St. Louis were from the northeast quadrant during the interval from July to December, 1938. No microseisms were recorded from the south, west, or southwest. The period of the waves varied between 3.5 and 7.5 sec. The average period was about 5.4 sec. The microseismic wave length was therefore of the order of 14¼ km. A study of the nature of microseismic waves from the three Galitzin-Wilip components of the Florissant station reveals in the waves many of the characteristics of the Rayleigh waves; that is, the particles in the passage of microseismic waves move in elliptical orbits of somewhat larger vertical axis and with retrograde motion. A comparison carried over a period of more than a year between microseisms and microbarometric oscillations recorded by specially designed microbarographs showed no direct relationship between the two phenomena in wave form, group form, period, or duration of storms. The source of microseisms is to be found not over the land, but rather out over the surface of the ocean. The amplitudes of microseisms depend only on the intensity and widespread character of barometric lows traveling over the ocean. Several correlations between the two phenomena seem to make this conclusion rather evident. Special emphasis is laid on the fact that all the determined directions of incoming microseisms at St. Louis point to a deep barometric low over the ocean. The period of microseisms seems to be a function of the distance between the station and the source of microseisms. The exact mechanism by which barometric lows over the ocean water result in the production of microseisms needs further investigation. Large microseisms have been produced without any indication of surf near the coasts, or with winds blowing from the land toward the ocean.


2019 ◽  
pp. 41-50
Author(s):  
V. K. Milyukov ◽  
A. Amoruso ◽  
L. Crescentini ◽  
A. P. Mironov ◽  
A. V. Myasnikov ◽  
...  

The free core nutation (FCN) is one of the Earth’s rotational eigenmodes, which is caused by the retrograde motion of the liquid core relative to the mantle. The FCN period and Q-factor are determined by the elastic properties of the core/mantle boundary (CMB) and their electromagnetic interaction. In the celestial coordinate system, the FCN period is about 430 days; in the Earth-fixed reference frame this effect manifests itself in the form of the free core resonance (FCR) whose frequency falls in the diurnal tidal band. FCR observation requires highly accurate measurement of the amplitudes and phases of the near-diurnal tidal waves. In particular, the parameter estimates for minor waves K1, P1, Ψ1, and Φ1 are critically important for evaluating the FCR effect, i.e., the period and decay of this resonant mode. The progress in the experimental study of FCR is mainly due to the accumulation of the data from superconducting gravimeters and VLBI; at the same time, also the data of the precision laser strainmeters were used. In this work, the FCR effect is studied based on the long-term strain precision records by two European stations: Baksan, Russia (laser interferometer–strainmeter with a measuring armlength of 75 m [Milyukov et al., 2005; 2007] and Gran Sasso, Italy (two perpendicular laser interferometer–strainmeters, BA and BC, each with a measuring armlength of 90 m [Amoruso and Crescentini, 2009]).


1994 ◽  
Vol 114 (2) ◽  
pp. 117-122
Author(s):  
Ryuichi Miyano ◽  
Hirofumi Takikawa ◽  
Tateki Sakakibara ◽  
Yasuo Suzuki

2017 ◽  
Vol 60 (9) ◽  
pp. 931-934 ◽  
Author(s):  
A V Borisov ◽  
A A Kilin ◽  
Yu L Karavaev
Keyword(s):  

1964 ◽  
Vol 54 (2) ◽  
pp. 475-484
Author(s):  
I. N. Gupta ◽  
C. Kisslinger

ABSTRACT The Rayleigh waves generated by an explosion on or in the interior of a two-dimensional model show that the source acts as a downward impulse when the shot is on or just below the surface, and as a buried source of compression for deeper shots. The seismograms are in agreement with established theory for the line source on or in a half-space. The source depth corresponding to the reversal of polarity of the Rayleigh wave is small, and appears to be equal to the radius of the zone of inelastic failure around the shot. The polarity reversal is a true indication of a change in the mechanism of Rayleigh wave generation, and is not related to the change from retrograde motion at the free surface to prograde motion in the interior associated with the change in sign of the radial component at depth.


Sign in / Sign up

Export Citation Format

Share Document