Conserving US temperate forest plant diversity: a case example with forest-floor Aristolochiaceae

2014 ◽  
Vol 15 (3) ◽  
pp. 236-246 ◽  
Author(s):  
T. Luna

Herpetologica ◽  
2017 ◽  
Vol 73 (3) ◽  
pp. 180-189 ◽  
Author(s):  
Cari-Ann M. Hickerson ◽  
Carl D. Anthony ◽  
B. Michael Walton


2021 ◽  
Author(s):  
Kathryn E. Barry ◽  
Stefan A. Schnitzer

AbstractOne of the central goals of ecology is to determine the mechanisms that enable coexistence among species. Evidence is accruing that conspecific negative density dependence (CNDD), the process by which plant seedlings are unable to survive in the area surrounding adults of their same species, is a major contributor to tree species coexistence. However, for CNDD to maintain diversity, three conditions must be met. First, CNDD must maintain diversity for the majority of the woody plant community (rather than merely specific groups). Second, the pattern of repelled recruitment must increase in with plant size. Third, CNDD must occurs across life history strategies and not be restricted to a single life history strategy. These three conditions are rarely tested simultaneously. In this study, we simultaneously test all three conditions in a woody plant community in a North American temperate forest. We examined whether the different woody plant growth forms (shrubs, understory trees, mid-story trees, canopy trees, and lianas) at different ontogenetic stages (seedling, sapling, and adult) were overdispersed – a spatial pattern indicative of CNDD – using spatial point pattern analysis across life history stages and strategies. We found that there was a strong signal of overdispersal at the community level. However, this pattern was driven by adult canopy trees. By contrast, understory plants, which can constitute up to 80% of temperate forest plant diversity, were not overdispersed as adults. The lack of overdispersal suggests that CNDD is unlikely to be a major mechanism maintaining understory plant diversity. The focus on trees for the vast majority of CNDD studies may have biased the perception of the prevalence of CNDD as a dominant mechanism that maintains community-level diversity when, according to our data, CNDD may be restricted largely to trees.



Author(s):  
Cari-Ann M. Hickerson ◽  
Carl D. Anthony ◽  
B. Michael Walton


2018 ◽  
Vol 15 (7) ◽  
pp. 2231-2249 ◽  
Author(s):  
Marie-Pierre Turpault ◽  
Christophe Calvaruso ◽  
Gil Kirchen ◽  
Paul-Olivier Redon ◽  
Carine Cochet

Abstract. The role of forest vegetation in the silicon (Si) cycle has been widely examined. However, to date, little is known about the specific role of fine roots. The main objective of our study was to assess the influence of fine roots on the Si cycle in a temperate forest in north-eastern France. Silicon pools and fluxes in vegetal solid and solution phases were quantified within each ecosystem compartment, i.e. in the atmosphere, above-ground and below-ground tree tissues, forest floor and different soil layers, on three plots, each with different soil types, i.e. Dystric Cambisol (DC), Eutric Cambisol (EC) and Rendzic Leptosol (RL). In this study, we took advantage of a natural soil gradient, from shallow calcic soil to deep moderately acidic soil, with similar climates, atmospheric depositions, species compositions and management. Soil solutions were measured monthly for 4 years to study the seasonal dynamics of Si fluxes. A budget of dissolved Si (DSi) was also determined for the forest floor and soil layers. Our study highlighted the major role of fine roots in the Si cycle in forest ecosystems for all soil types. Due to the abundance of fine roots mainly in the superficial soil layers, their high Si concentration (equivalent to that of leaves and 2 orders higher than that of coarse roots) and their rapid turnover rate (approximately 1 year), the mean annual Si fluxes in fine roots in the three plots were 68 and 110 kgha-1yr-1 for the RL and the DC, respectively. The turnover rates of fine roots and leaves were approximately 71 and 28 % of the total Si taken up by trees each year, demonstrating the importance of biological recycling in the Si cycle in forests. Less than 1 % of the Si taken up by trees each year accumulated in the perennial tissues. This study also demonstrated the influence of soil type on the concentration of Si in the annual tissues and therefore on the Si fluxes in forests. The concentrations of Si in leaves and fine roots were approximately 1.5–2.0 times higher in the Si-rich DC compared to the Si-poor RL. In terms of the DSi budget, DSi production was large in the three plots in the forest floor (9.9 to 12.7 kgha-1yr-1), as well as in the superficial soil layer (5.3 to 14.5 kgha-1yr-1), and decreased with soil depth. An immobilization of DSi was even observed at 90 cm depth in plot DC (−1.7 kgha-1yr-1). The amount of Si leached from the soil profile was relatively low compared to the annual uptake by trees (13 % in plot DC to 29 % in plot RL). The monthly measurements demonstrated that the seasonal dynamics of the DSi budget were mainly linked to biological activity. Notably, the peak of dissolved Si production in the superficial soil layer occurred during winter and probably resulted from fine-root decomposition. Our study reveals that biological processes, particularly those involving fine roots, play a predominant role in the Si cycle in temperate forest ecosystems, while the geochemical processes appear to be limited.





1999 ◽  
Vol 14 (8) ◽  
pp. 316-320 ◽  
Author(s):  
William S. Currie


2016 ◽  
Vol 9 (3) ◽  
pp. 280-292 ◽  
Author(s):  
Javid Ahmad Dar ◽  
Somaiah Sundarapandian


2011 ◽  
Vol 47 (6) ◽  
pp. 409-413 ◽  
Author(s):  
Seikoh Saitoh ◽  
Saori Fujii ◽  
Hiroshi Takeda


Sign in / Sign up

Export Citation Format

Share Document