ghg fluxes
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 48)

H-INDEX

13
(FIVE YEARS 3)

2022 ◽  
pp. 182-196
Author(s):  
Madhavi Konni ◽  
Vara Saritha ◽  
Pulavarthi Madhuri ◽  
K. Soma Sekhar ◽  
Manoj Kumar Karnena

Wetlands (WLs) in the landscapes are important for the GHGs production, ingesting, and exchange with the atmosphere. In this chapter, the authors illustrated how the WLs influence climate change, even though it is typical for determining the climatic role of WLs in the broader perspective. The conclusions might be wary based on the radiative balance as the radiative forcing since the 1750s or climatic roles are continuously changing in the wetlands. Degradation of WLs leads to reducing their functioning, and GHG fluxes might change and alter the climatic roles of the WLs. The chapter demonstrated that WL disturbances might cause global warming for a longer duration even though the WLs are restored or managed by replacing them with the mitigation WLs. Thus, activities that cause disturbance in the WLs leading to carbon oxidation in the soils should be avoided. Regulating the climate is an ecosystem service in the WLs; during the planning of the WLs, protection, restoration, and creation, environmental management should be considered.


2021 ◽  
Vol 9 ◽  
Author(s):  
Fangfang Wang ◽  
Yongzhe Chen ◽  
Ting Li ◽  
Cong Wang ◽  
Dongbo Wang ◽  
...  

Both livestock grazing and soil freeze-thaw cycles (FTCs) can affect the soil-atmosphere exchange of greenhouse gases (GHGs) in grasslands. However, the combined effects of grazing and FTCs on GHG fluxes in meadow steppe soils remain unclear. In this study, we collected soils from paired grazing and enclosed sites and conducted an incubation experiment to investigate the effect of grazing on soil GHG fluxes in the meadow steppes of Inner Mongolia during three FTCs. Our results showed that FTCs substantially stimulated the emissions of soil N2O and CO2 and the uptake of CH4 in the meadow steppes. However, compared with enclosure treatments, grazing significantly reduced the cumulative N2O, CO2 and CH4 fluxes by 13.3, 14.6, and 26.8%, respectively, during the entire FTCs experiment. The soil dissolved organic carbon (DOC) and nitrogen (DON), NH4+-N and NO3–-N, significantly increased after three FTCs and showed close correlations with N2O and CO2 emissions. Structural equation modeling (SEM) revealed that the increase in NO3–-N induced by FTCs dominated the variance in N2O emissions and that DOC strongly affected CO2 emissions during thawing periods. However, long-term grazing reduced soil substrate availability and microbial activity and increased soil bulk density, which in turn decreased the cumulative GHG fluxes during FTCs. In addition, the interaction between grazing and FTCs significantly affected CO2 and CH4 fluxes but not N2O fluxes. Our results indicated that livestock grazing had an important effect on soil GHG fluxes during FTCs. The combined effect of grazing and FTCs should be taken into account in future estimations of GHG budgets in both modeling and experimental studies.


2021 ◽  
Vol 13 (22) ◽  
pp. 12740
Author(s):  
Jian Li ◽  
Zhanrui Leng ◽  
Yueming Wu ◽  
Guanlin Li ◽  
Guangqian Ren ◽  
...  

The introduction of embankment seawalls to limit the expansion of the exotic C4 perennial grass Spartina alteniflora Loisel in eastern China’s coastal wetlands has more than doubled in the past decades. Previous research focused on the impact of sea embankment reclamation on the soil organic carbon (C) and nitrogen (N) stocks in salt marshes, whereas no study attempted to assess the impact of sea embankment reclamation on greenhouse gas (GHG) fluxes in such marshes. Here we examined the impact of sea embankment reclamation on GHG stocks and fluxes of an invasive Spartina alterniflora and native Phragmites australis dominated salt marsh in the Dongtai wetlands of China’s Jiangsu province. Sea embankment reclamation significantly decreased soil total organic C by 54.0% and total organic N by 73.2%, decreasing plant biomass, soil moisture, and soil salinity in both plants’ marsh. It increased CO2 emissions by 38.2% and 13.5%, and reduced CH4 emissions by 34.5% and 37.1%, respectively, in the Spartina alterniflora and Phragmites australis marshes. The coastal embankment wall also significantly increased N2O emission by 48.9% in the Phragmites australis salt marsh and reduced emissions by 17.2% in the Spartina alterniflora marsh. The fluxes of methane CH4 and carbon dioxide CO2 were similar in both restored and unrestored sections, whereas the fluxes of nitrous oxide N2O were substantially different owing to increased nitrate as a result of N-loading. Our findings show that sea embankment reclamation significantly alters coastal marsh potential to sequester C and N, particularly in native Phragmites australis salt marshes. As a result, sea embankment reclamation essentially weakens native and invasive saltmarshes’ C and N sinks, potentially depleting C and N sinks in coastal China’s wetlands. Stakeholders and policymakers can utilize this scientific evidence to strike a balance between seawall reclamation and invasive plant expansion in coastal wetlands.


2021 ◽  
Vol 18 (18) ◽  
pp. 5085-5096
Author(s):  
Naima Iram ◽  
Emad Kavehei ◽  
Damien T. Maher ◽  
Stuart E. Bunn ◽  
Mehran Rezaei Rashti ◽  
...  

Abstract. Coastal wetlands are essential for regulating the global carbon budget through soil carbon sequestration and greenhouse gas (GHG – CO2, CH4, and N2O) fluxes. The conversion of coastal wetlands to agricultural land alters these fluxes' magnitude and direction (uptake/release). However, the extent and drivers of change of GHG fluxes are still unknown for many tropical regions. We measured soil GHG fluxes from three natural coastal wetlands – mangroves, salt marsh, and freshwater tidal forests – and two alternative agricultural land uses – sugarcane farming and pastures for cattle grazing (ponded and dry conditions). We assessed variations throughout different climatic conditions (dry–cool, dry–hot, and wet–hot) within 2 years of measurements (2018–2020) in tropical Australia. The wet pasture had by far the highest CH4 emissions with 1231±386 mgm-2d-1, which were 200-fold higher than any other site. Dry pastures and sugarcane were the highest emitters of N2O with 55±9 mgm-2d-1 (wet–hot period) and 11±3 mgm-2d-1 (hot-dry period, coinciding with fertilisation), respectively. Dry pastures were also the highest emitters of CO2 with 20±1 gm-2d-1 (wet–hot period). The three coastal wetlands measured had lower emissions, with salt marsh uptake of -0.55±0.23 and -1.19±0.08 gm-2d-1 of N2O and CO2, respectively, during the dry–hot period. During the sampled period, sugarcane and pastures had higher total cumulative soil GHG emissions (CH4+N2O) of 7142 and 56 124 CO2-eqkgha-1yr-1 compared to coastal wetlands with 144 to 884 CO2-eqkgha-1yr-1 (where CO2-eq is CO2 equivalent). Restoring unproductive sugarcane land or pastures (especially ponded ones) to coastal wetlands could provide significant GHG mitigation.


2021 ◽  
Vol 294 ◽  
pp. 112950
Author(s):  
Xingkai Xu ◽  
Cuntao Duan ◽  
Haohao Wu ◽  
Xianbao Luo ◽  
Lin Han

Agriculture ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 750
Author(s):  
Jessica Sherman ◽  
Eric Young ◽  
William Jokela ◽  
Jason Cavadini

Surface applied liquid dairy manure application (i.e., broadcasting) after alfalfa (Medicago sativa L.) harvest is a common practice. Low disturbance manure incorporation (LDMI) may offer multiple benefits including lower ammonia (NH3), greenhouse gas (GHG) and hydrologic nutrient losses compared to broadcast. However, few studies have simultaneously quantified LDMI impacts on alfalfa yield, NH3 and greenhouse gas (GHG) fluxes. We measured NH3, nitrous oxide (N2O), and methane (CH4) fluxes for liquid dairy manure treatments applied to alfalfa plots for broadcast and LDMI over three seasons (2014 to 2016) in central Wisconsin, USA. There were minor differences in alfalfa yield and nitrogen (N) uptake across treatments and years. Shallow disk injection and aerator/band reduced NH3 loss by 95 and 52% of broadcast, respectively, however both substantially increased N2O fluxes (6 and 4.5 kg ha−1 year−1 versus 3.6 kg ha−1 year−1 for broadcast, respectively). The magnitude and timing of N2O fluxes were related to manure application and precipitation events. Average CH4 fluxes were similar among methods and increased with soil moisture after manure application. Results highlight the importance of quantitatively evaluating agri-environmental tradeoffs of LDMI versus broadcast manure application for dairy farms.


SOIL ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 433-451
Author(s):  
Joseph Tamale ◽  
Roman Hüppi ◽  
Marco Griepentrog ◽  
Laban Frank Turyagyenda ◽  
Matti Barthel ◽  
...  

Abstract. Soil macronutrient availability is one of the abiotic controls that alters the exchange of greenhouse gases (GHGs) between the soil and the atmosphere in tropical forests. However, evidence on the macronutrient regulation of soil GHG fluxes from central African tropical forests is still lacking, limiting our understanding of how these biomes could respond to potential future increases in nitrogen (N) and phosphorus (P) deposition. The aim of this study was to disentangle the regulation effect of soil nutrients on soil GHG fluxes from a Ugandan tropical forest reserve in the context of increasing N and P deposition. Therefore, a large-scale nutrient manipulation experiment (NME), based on 40 m×40 m plots with different nutrient addition treatments (N, P, N + P, and control), was established in the Budongo Central Forest Reserve. Soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes were measured monthly, using permanently installed static chambers, for 14 months. Total soil CO2 fluxes were partitioned into autotrophic and heterotrophic components through a root trenching treatment. In addition, soil temperature, soil water content, and nitrates were measured in parallel to GHG fluxes. N addition (N and N + P) resulted in significantly higher N2O fluxes in the transitory phase (0–28 d after fertilization; p<0.01) because N fertilization likely increased soil N beyond the microbial immobilization and plant nutritional demands, leaving the excess to be nitrified or denitrified. Prolonged N fertilization, however, did not elicit a significant response in background (measured more than 28 d after fertilization) N2O fluxes. P fertilization marginally and significantly increased transitory (p=0.05) and background (p=0.01) CH4 consumption, probably because it enhanced methanotrophic activity. The addition of N and P (N + P) resulted in larger CO2 fluxes in the transitory phase (p=0.01), suggesting a possible co-limitation of both N and P on soil respiration. Heterotrophic (microbial) CO2 effluxes were significantly higher than the autotrophic (root) CO2 effluxes (p<0.01) across all treatment plots, with microbes contributing about two-thirds of the total soil CO2 effluxes. However, neither heterotrophic nor autotrophic respiration significantly differed between treatments. The results from this study suggest that the feedback of tropical forests to the global soil GHG budget could be disproportionately altered by increases in N and P availability over these biomes.


2021 ◽  
Vol 18 (13) ◽  
pp. 4227-4241
Author(s):  
Sirwan Yamulki ◽  
Jack Forster ◽  
Georgios Xenakis ◽  
Adam Ash ◽  
Jacqui Brunt ◽  
...  

Abstract. The effect of clear-fell harvesting on soil greenhouse gas (GHG) fluxes of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) was assessed in a Sitka spruce forest growing on a peaty gley organo-mineral soil in northern England. Fluxes from the soil and litter layer were measured monthly by the closed chamber method and gas chromatography over 4 years in two mature stands, with one area harvested after the first year. Concurrent measurements of soil temperature and moisture helped to elucidate reasons for the changes in fluxes. In the 3 years after felling, there was a significant increase in the soil temperature, particularly between June and November (3 to 5 ∘C higher), and in soil moisture, which was 62 % higher in the felled area, and these had pronounced effects on the GHG balance in addition to the removal of the trees and their carbon input to the soil. Annual soil CO2 effluxes reduced to almost a third in the first year after felling (a drop from 24.0 to 8.9 t CO2 ha−1 yr−1) and half in the second and third year (mean 11.8 t CO2 ha−1 yr−1) compared to before felling, while those from the unfelled area were little changed. Annual effluxes of N2O more than doubled in the first two years (from 1.0 to 2.3 and 2.5 t CO2e ha−1 yr−1, respectively), although by the third year they were only 20 % higher (1.2 t CO2e ha−1 yr−1). CH4 fluxes changed from a small net uptake of −0.03 t CO2e ha−1 yr−1 before felling to a small efflux increasing over the 3 years to 0.34 t CO2e ha−1 yr−1, presumably because of the wetter soil after felling. Soil CO2 effluxes dominated the annual net GHG emission when the three gases were compared using their global warming potential (GWP), but N2O contributed up to 20 % of this. This study showed fluxes of CO2, CH4, and N2O responded differently to clear-felling due to the significant changes in soil biotic and abiotic factors and showed large variations between years. This demonstrates the need for multi-year measurements of all GHGs to enable a robust estimate of the effect of the clear-fell phase on the GHG balance of managed forests. This is one of very few multi-year monitoring studies to assess the effect of clear-fell harvesting on soil GHG fluxes.


Sign in / Sign up

Export Citation Format

Share Document