scholarly journals Smart Ambulance Traffic Control System

2021 ◽  
Vol 4 (1) ◽  
pp. c28-34
Author(s):  
SUREN KRISHNAN ◽  
RAJAN THANGAVELOO ◽  
SHAPI-EE BIN ABD RAHMAN ◽  
SIVA RAJA SINDIRAMUTTY

The traffic lights control system is broadly implemented to track and control the flow of vehicles through the intersection of multiple roads. Nevertheless, the synchronization of traffic light system at adjacent junctions is an intricate issue given the different parameters involved. Existing traffic light control systems do not control many flows approaching the same junctions. This results in traffic jams and congestion at urban areas or major cities with high volume traffic consisting of various types of vehicles. This includes emergency ambulances travelling on the same traffic junction during peak hour traffic. Thus, an enhanced traffic light control system is imperative to provide a smooth and free flow for an ambulance on the way to its destination. The Smart Ambulance Traffic Control System proposed in this paper is an integrated system of traffic light control for emergency ambulance service. The traffic lights can be controlled in a timely and efficient manner every time an emergency ambulance is approaching. The Radio-Frequency Identification (RFID) is used as an instrument to communicate with traffic lights during traffic congestion. The emergency ambulance driver needs to activate the RFID tag to allow the detection of RFID readers to control the traffic light operation at the upcoming traffic light junctions. The traffic lights in the path of the ambulance are forced to be green to allow the emergency ambulance to pass through the junction with top priority. Immediately after the ambulance has passed the junction, the control system will reset and return to normal operations.

Nowadays, automatic traffic light control is becoming an important requirement for travelers and number of road users especially for emergency service providers such as ambulance drivers, fire fighters etc... Various alternatives have been proposed, but it has certain limitations.One such example is using an RF transmitter mounted on the ambulance which will communicate with the RF receiver mounted on the signal post in the traffic control system. A special algorithm is provided to control the traffic signals automatically by pressing the key provided in the keybord on the ambulance by the driver.But in this case, there is big trouble for car accidents or road accidents, because of automatic adjustment and a large number of vehicles, and there is a problem of delay in first aid service, with these overcrowded roads. This paper describes a solution that is "Intelligent Ambulance with Automatic Traffic Control” which includes the accident detecting, alerting and tracking mechanism with an automatic traffic light controlling system to overcome this delay of first aid service. An ambulance can thereby easily finde a freeway to reach the victim in a minimal time and thereby providing first aid as soon as possible. This is possible by using an RF transmitter on the ambulance which will communicate with the RF receiver mounted on the signal post in the traffic control system. To control the traffic signals automatically, and to move towards the location in minimal time, a specific algorithm is proposed in this paper. Thus, the traffic light gets controlled by the intelligent ambulance itself, in such a way that it could provide free path to the ambulance[1].


Author(s):  
Adi Sabwa Isti Besari Arkanuddin ◽  
Selo Sulistyo ◽  
Anugerah Galang Persada

Traffic congestion is one of the main problems in transportation sector and it causes a lot of drawbacks to public. The traffic light system is used to reduce the level of occurring traffic congestion. Generally, the available traffic light systems use a fixed time setting. This old traffic control system is no longer able to manage the ever-changing traffic conditions effectively and efficiently, causing a long queue of vehicles. To overcome this problem, a traffic light control system that can adapt to actual conditions of road density and can run automatically is offered. This system utilizes Google Map API as a road density data source. The result of this study is a traffic control system that can adjust the green light time duration based on the obtained density values and density trends, simulation of this adaptive system as well as simulation results analysis. A prototype of this adaptive control system was also produced in this study.


2012 ◽  
Vol 151 ◽  
pp. 510-513 ◽  
Author(s):  
Yu Peng Yao ◽  
Ying Shi ◽  
Ji You Fei

Configuration technology is a new technology for monitoring in the current society; it is the result of the development of computer control technology. To traffic light control system, it is to combine the use of configuration technology and procedures related to PLC, and through software simulation and traffic lights light changes, traffic light control system could achieve the monitoring problem, and if the system is in good condition, its application can save a lot of labor powers and materials.


2014 ◽  
Vol 716-717 ◽  
pp. 1562-1566
Author(s):  
Wen Liang Wu

The intelligent traffic light control is the core problem in the intelligent traffic research field, in order to solve this problem, the intelligent traffic light control system is proposed based on multi CPU. In a multi processor system, aiming at the intelligent traffic light, the reasonable control is taken. In the intelligent traffic light control system, the related principles of multi processor system design and shared memory are elaborated in detail. The BP neural network self-tuning PID control algorithm is applied in the traffic lights control process, reasonable control of traffic lights is obtained. The experiment results show that the principle is applied in the intelligent traffic light control system, it can greatly improve the control accuracy, so it can meet the actual demand of intelligent traffic management.


2019 ◽  
Vol 3 (1) ◽  
pp. 1-10
Author(s):  
Paula Juniana ◽  
Lukman Hakim

Traffic congestion is a common occurrence in Indonesia. Traffic congestion is increasing from year to year, causing many things to happen, such as longer travel time, increased transportation costs, serious disruptions to transporting products, decreasing levels of work productivity, and wasteful use of labor energy. Congestion is also caused by a traffic light control system that is made with a fixed time so it can not detect the density of certain paths. Traffic lights in Indonesia, frequent damage that makes the density and the flow of his road vehicles can not be controlled. From these problems, conducted research to reduce the density of vehicles using infrared sensors and see the waiting time of the vehicle when the red light. The traffic light control system will use Fuzzy Logic Mamdani method. In Mamdani method by applying fuzzy into each variable and will be done matching between rule with condition which fulfilled to determine contents of output to be executed by prototype. This congestion detection will help the system in controlling the green light time by looking at stable, medium, and traffic jams. When the bottleneck starts to detect, the prototype will add a green light time according to the condition that is 0 seconds, 5 seconds, 10 seconds, and 15 seconds. However, when the streets are not detected by traffic jams, the green light will be back to normal at 15 seconds without additional time


KOMTEKINFO ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 176-185
Author(s):  
Dentik Karyaningsih ◽  
Robby Rizky

Traffic jams are a common sight that can be seen in almost all major cities in Indonesia. One of them is in Rangkasbitung City, Lebak Regency. This happens because the number of vehicles continues to increase. The traffic light control system implemented in Indonesia is a static preset time because the time of each phase is predetermined. This type of control system is still not effective in overcoming traffic congestion, especially at certain peak traffic jams. By using the Mamdani fuzzy logic system, it is possible to implement the human mindset into a system. Some rules can be set out in the fuzzy logic controller. The purpose of this study is to design a traffic light control system using fuzzy inference that regulates traffic based on its density. The data used are observations made at the research site. The conclusion of this study is to explain that the fuzzy mamdani method can solve existing problems in traffic congestion in Rangkasbitung City, Lebak Regency, Banten Province


2013 ◽  
Vol 5 (2) ◽  
pp. 58-62 ◽  
Author(s):  
Adhitya Yoga Yudanto ◽  
Marvin Apriyadi ◽  
Kevin Sanjaya

The traffic lights problem is already commonly found in large cities. The traffic lights are supposed to control the flow of the road, but sometimes causes a congestion. This happens because the distribution of the time are all the same for all lines, without seeing the condition of the density of each lane. There’s one effort that can be done to overcome this problem, is to create a traffic light control system. With this system, the congestion that occurs around the traffic lights can be reduced. This system is using fuzzy logic. Fuzzy logic is one of computer science that studies about the value of truth that worth a lot. For example, a air conditioning system control subway Sendai in Japan. As for making a traffic light control system, the author using Fuzzy Inference System (FIS) that already exist in the application of MATLAB R2013a with Mamdani method. Index Terms —fuzzy logic, traffic lights, MATLAB.


2011 ◽  
Vol 58-60 ◽  
pp. 2477-2482 ◽  
Author(s):  
Nai Jun Xie ◽  
Qi Hua Cheng

Intelligent traffic light control system based on fuzzy control was designed and the implementation of it was also discussed. The system can alter the signal light time according to the number of automobile waiting for passage. The simulation based on Mathematica software show that this method has better effect than traditional way in increase the automobile traffic efficiency and energy saving, what’s more it can adapt to complex traffic conditions.


World Science ◽  
2018 ◽  
pp. 15-19
Author(s):  
Мoroz B. I. ◽  
Alekseieiev M. O. ◽  
Shvachych G. G. ◽  
Pasichnik A. M. ◽  
Miroshnichenko S. V.

There was method of making an effective system of traffic-light control of the traffic through the intersections in one direction according to which the phase coefficients for each cycle of traffic-light control are computed in real-time using the data of traffic intensity detected by transport detectors. Thus, the built-in traffic control system will be dynamically adapted to the change in the intensity of traffic flows, and the structure of the cycle and its duration will be changed taking into account the parameters of the traffic flow at the intersection. Accordingly, the traffic light cycle, where each cycle has the minimum required duration, will be most effective and will ensure uninterrupted traffic, the lack of traffic jams and the convenience for the pedestrian crossings.


JURTEKSI ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 67-74
Author(s):  
Reny Medikawati Taufiq ◽  
Sunanto Sunanto ◽  
Yoze Rizki

Abstract: Pekanbaru still using conventional traffic light control system. Pekanbaru as the capital of Riau Province is predicted  udergo the  increased of urban population by 54.5% in 2025. It is important for Pekanbaru to immediately implement smart and efficient traffic management system, so that traffic congestion can be resolved quickly. This research paper provides a design solution for smart traffic light management (Smart Traffic Control System), based on object detection technology that uses deep learning to detect the number and type of vehicles. The number of vehicle is the basis for determining the green light timer automatically. The Smart Traffic Control System (STCS) is integrated with a web based geographic information system (smart map) that can display the current condition  (picture, the number of vehicle, congestion level) of each STCS location. This integrated system has been tested on a traffic light prototype, using a mini computer and a miniature vehicle. This integrated system is able to detect 9 out of 12 vehicles, and able to send data regularly to the smart map.  Keywords: deep learning; smart mobility; smart traffic control system Abstrak: Pengaturan lampu lalu lintas di Kota Pekanbaru masih dilakukan secara  konvensional. Pekanbaru sebagai ibukota Provinsi Riau diprediksikan akan mengalami peningkatan jumlah penduduk  perkotaan sebesar 54,5% pada tahun 2025. Dengan melihat predikisi ini, penting bagi kota Pekanbaru untuk segera memiliki tata kelola lalu lintas yang cerdas dan efisien agar kemacetan dapat ditanggulangi dengan cepat. Penelitian ini memberikan rancangan solusi untuk tata kelola  lampu lalu lintas cerdas (Smart Traffic Control System), berbasis teknologi object detection  yang menggunakan deep learning untuk mendeteksi jumlah dan jenis kendaraan. Jumlah kendaraan menjadi dasar penentuan timer lampu hijau secara otomatis. Smart Traffic Control System (STCS) terintegrasi dengan sistem informasi geografis berbasis web (smart map) yang secara kontinu menerima informasi kepadatan (gambar terkini, jumlah kendaraan, level kepadatan), kemudian menampilkannya diatas peta Kota Pekanbaru. Solusi sistem terintegrasi ini telah diujikan pada sebuah prototipe lampu lalu lintas, menggunakan komputer mini  dan  miniatur kendaraan. Sistem terintegrasi ini mampu mendeteksi 9 dari 12 kendaraan, dan mampu mengirimkan data secara berkala kepada smart map. Kata kunci: deep learning; smart mobility; smart traffic control system


Sign in / Sign up

Export Citation Format

Share Document