scholarly journals Changing the Nature of the Chelating Ligand of Tetracoordinate Boron-Containing PAH Multi-resonant Thermally Activated Delayed Fluorescence Emitters Tunes the Emission from Green to Deep Red

Author(s):  
Guoyun Meng ◽  
Lijie Liu ◽  
Zhechang He ◽  
David Hall ◽  
Xiang Wang ◽  
...  

Multi-resonant thermally activated delayed fluorescence (MR-TADF) materials have attracted considerable attention recently. The molecular design frequently incorporates cycloboration. However, to the best of our knowledge MR-TADF compounds containing nitrogen chelation to boron is still unknown. Reported herein is a new class of tetracoordinate boron-containing MR-TADF emitters bearing a C^N^C- and N^N^N-chelating ligands. We demonstrate that the replacement of B−C covalent bond in C^N^C-chelating ligand by B−N covalent bond affords a regioisomer, which dramatically influences the optoelectronic properties of the molecule. The resulting N^N^N-chelating compounds show bathochromically shifted absorption and emission spectra relative to C^N^C-chelating compounds. The incorporation of tert-butylcarbazole group to the 4-position of the pyridine significantly enhances both the thermal stability and the reverse intersystem crossing rate, yet has a negligible effect on the emission properties. Consequently, high-performance hyperfluorescence organic light-emitting diodes (HF-OLEDs) that utilize these molecules as green and yellow-green emitters show maximum external quantum efficiency (ηext) of 11.5% and 25.1%, and a suppressed efficiency roll-off with ηext of 10.2% and 18.7% at a luminance of 1000 cd m−2, respectively.

2021 ◽  
Author(s):  
Cathay Chai Au-Yeung ◽  
Lok-Kwan Li ◽  
Man-Chung Tang ◽  
Shiu-Lun Lai ◽  
Wai-Lung Cheung ◽  
...  

We report the design of a new class of fused heterocyclic alkynyl ligand-containing gold(iii) complexes, which shows tunable emission colors spanning yellow to red region and exhibits thermally activated delayed fluorescence (TADF) properties.


2018 ◽  
Vol 14 ◽  
pp. 282-308 ◽  
Author(s):  
Thanh-Tuân Bui ◽  
Fabrice Goubard ◽  
Malika Ibrahim-Ouali ◽  
Didier Gigmes ◽  
Frédéric Dumur

The design of highly emissive and stable blue emitters for organic light emitting diodes (OLEDs) is still a challenge, justifying the intense research activity of the scientific community in this field. Recently, a great deal of interest has been devoted to the elaboration of emitters exhibiting a thermally activated delayed fluorescence (TADF). By a specific molecular design consisting into a minimal overlap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) due to a spatial separation of the electron-donating and the electron-releasing parts, luminescent materials exhibiting small S1–T1 energy splitting could be obtained, enabling to thermally upconvert the electrons from the triplet to the singlet excited states by reverse intersystem crossing (RISC). By harvesting both singlet and triplet excitons for light emission, OLEDs competing and sometimes overcoming the performance of phosphorescence-based OLEDs could be fabricated, justifying the interest for this new family of materials massively popularized by Chihaya Adachi since 2012. In this review, we proposed to focus on the recent advances in the molecular design of blue TADF emitters for OLEDs during the last few years.


2021 ◽  
Author(s):  
Ming Zhang ◽  
Cai-Jun Zheng ◽  
Hui Lin ◽  
Si-Lu Tao

Owing to their natural thermally activated delayed fluorescence (TADF) characteristics, the development of exciplex emitters for organic light-emitting diodes (OLEDs) has witnessed booming progress in recent years.


2019 ◽  
Vol 7 (32) ◽  
pp. 9966-9974 ◽  
Author(s):  
Bowen Li ◽  
Zhiyi Li ◽  
Xiaofang Wei ◽  
Fengyun Guo ◽  
Ying Wang ◽  
...  

Thermally activated delayed fluorescence (TADF) emitter based organic light-emitting diodes (OLEDs) utilizing both singlet and triplet excitons are considered as the most promising third-generation technology for lighting and display.


Sign in / Sign up

Export Citation Format

Share Document