scholarly journals Effects of Axial Solvent Coordination to Dirhodium Complexes on Reactivity and Selectivity in C–H Insertion Reactions: A Computational Study

Author(s):  
Croix Laconsay ◽  
Anna Pla-Quintana ◽  
Dean Tantillo

Density functional theory calculations were used to systematically explore the effects of axial ligation by solvent molecules on the reactivity and selectivity of dirhodium tetracarboxylates with diazo compounds in the context of C–H insertion into propane. Insertions on three types of diazo compounds—acceptor/acceptor, donor/acceptor, and donor/donor—promoted by dirhodium tetraformate were tested with and without axial solvent ligation for no surrounding solvent, dichloromethane, isopropanol, and acetonitrile. Magnitudes, origins, and consequences of structural and electronic changes arising from axial ligation were characterized. The results suggest that axial ligation affects barriers for N2 extrusion and C–H insertion, the former to a larger extent.

2021 ◽  
Author(s):  
Croix Laconsay ◽  
Anna Pla-Quintana ◽  
Dean Tantillo

Density functional theory calculations were used to systematically explore the effects of axial ligation by solvent molecules on the reactivity and selectivity of dirhodium tetracarboxylates with diazo compounds in the context of C–H insertion into propane. Insertions on three types of diazo compounds—acceptor/acceptor, donor/acceptor, and donor/donor—promoted by dirhodium tetraformate were tested with and without axial solvent ligation for no surrounding solvent, dichloromethane, isopropanol, and acetonitrile. Magnitudes, origins, and consequences of structural and electronic changes arising from axial ligation were characterized. The results suggest that axial ligation affects barriers for N2 extrusion and C–H insertion, the former to a larger extent.


2001 ◽  
Vol 56 (1) ◽  
pp. 13-24 ◽  
Author(s):  
Hans Bock ◽  
Sven Holl ◽  
Volker Krenzel

Abstract The structures of tri-and tetraiodo-substituted carbon compounds are determined either expe­rimentally by X-Ray Structure Analysis or, because crystallization of tetraiodothiophene could not be achieved, approximated by Density Functional Theory optimization of structural data from a donor/acceptor complex. The structures show noteworthy details such as a second po­lymorph of tetraiodoethene crystallized by sublimation or herringbone crystal packing patterns of tetraiodopyrrole derivatives. All molecular geometries are discussed and compared based on relativistic density functional theory calculations with 6 -31G* basis sets including iodine pseudopotentials. They reproduce even finer structural details due to van der Waals repulsion of the bulky iodo substituents. Natural Bond Orbital (NBO) charge distributions suggest positive partial charges at all iodine centers with the strongest polarization Cδ㊀ → Iδ㊉ in HCI3, which contains well over 97% iodine.


Author(s):  
Xuexiang Ma ◽  
Aili Feng ◽  
Chengbu Liu ◽  
Dongju Zhang

Density functional theory calculations were performed on a prototype of three-component reactions involving aryl iodides, 2,6-substituted aryl bromides, and acrylates to understand the construction of axially chiral biaryls through the...


2019 ◽  
Vol 6 (12) ◽  
pp. 3482-3492 ◽  
Author(s):  
Yun-Jie Chu ◽  
Xue-Mei Chen ◽  
Chun-Guang Liu

The silanol-functionalized POM-supported single-site Os oxide catalyst has been theoretically considered for epoxidation of propylene in the presence of dioxygen based on density functional theory calculations.


2019 ◽  
Vol 21 (45) ◽  
pp. 25397-25405
Author(s):  
Shukai Yao ◽  
Pilsun Yoo ◽  
Peilin Liao

First principles density functional theory calculations were performed to identify transition metal perovskites CaFeO3, SrFeO3, BaFeO3 and SmMnO3 as promising candidates with large band gap opening upon hydrogen doping.


2009 ◽  
Vol 87 (7) ◽  
pp. 974-983 ◽  
Author(s):  
Sarah R. Whittleton ◽  
Russell J. Boyd ◽  
T. Bruce Grindley

Density functional theory and second-order Møller–Plesset perturbation theory with effective core potentials have been used to calculate homolytic bond-dissociation enthalpies, D(Sn–X), of organotin compounds, and their performance has been assessed by comparison with available experimental bond enthalpies. The SDB-aug-cc-pVTZ basis set with its effective core potential was used to calculate the D(Sn–X) of a series of trimethyltin(IV) species, Me3Sn–X, where X = H, CH3, CH2CH3, NH2, OH, Cl, and F. This is the most comprehensive report to date of homolytic Sn–X bond-dissociation enthalpies (BDEs). Effective core potentials are then used to calculate thermodynamic parameters including donor–acceptor bond enthalpies, [Formula: see text], for a series of tin-ligand complexes, L2SnX4 (X = Br or Cl, L = py, dmf, or dmtf), which are compared with previous experimental and nonrelativistic computational results. Based on computational efficiency and accuracy, it is concluded that effective core potentials are appropriate computational methods to examine bonding in organotin systems.


RSC Advances ◽  
2014 ◽  
Vol 4 (72) ◽  
pp. 38300-38309 ◽  
Author(s):  
Chun-Guang Liu ◽  
Ming-Li Gao ◽  
Zhi-Jian Wu

Redox-switchable second-order nonlinear optical (NLO) responses of a series of ferrocene-tetrathiafulvalene (Fc–TTF) hybrids have been studied based on density functional theory calculations.


2011 ◽  
Vol 83 (3) ◽  
pp. 565-575 ◽  
Author(s):  
Hanne Therese Bonge ◽  
Tore Hansen

The halodiazoacetates are a group of synthetically useful halogenated diazo compounds that can be used in Rh(II)-catalyzed carbenoid reactions. In the reactions between the halodiazoacetates and electron-rich, sterically unhindered alkenes, halocyclopropanes are formed in good to excellent yields. The halodiazoacetates also react well in C–H and Si–H insertion reactions, broadening the synthetic utility of these reactions. The products of the reactions are synthetically useful α-halocarbonyl compounds. Density functional theory (DFT) calculations have given insight into the mechanism of the cyclopropanation and C–H insertion reactions of the halodiazoacetates, and have also shown that the halodiazoacetates have a particularly high kinetic activity.


2016 ◽  
Vol 18 (36) ◽  
pp. 25010-25021 ◽  
Author(s):  
Chung Man Ip ◽  
Alessandro Troisi

Three reaction pathways for the photocatalytic reduction of carbon dioxide to methane are investigated with density functional theory calculations.


Sign in / Sign up

Export Citation Format

Share Document