scholarly journals Controllable phycobilin modification: an alternative photoacclimation response in cryptophyte algae

Author(s):  
Leah Spangler ◽  
Mina Yu ◽  
Philip Jeffrey ◽  
Gregory Scholes

Cryptophyte algae are well known for their ability to survive under low light conditions through the use of their auxiliary light harvesting antennas, phycobiliproteins. Mainly acting to absorb light where chlorophyll cannot (500-650 nm), phycobiliproteins also play an instrumental role in helping cryptophyte algae respond to changes in light intensity through the process of photoacclimation. Until recently, photoacclimation in cryptophyte algae was only observed as a change in the cellular concentration of phycobiliproteins; however, an additional photoacclimation response was recently discovered that causes shifts in the phycobiliprotein absorbance peaks following growth under red, blue, or green light. Here, we reproduce this newly identified photoacclimation response in two other species of cryptophyte algae, P. sulcata and H. pacifica, and elucidate the origin of the response on the protein level. We compare isolated native and photoacclimated phycobiliproteins for these two species using spectroscopy and mass spectrometry, and we report the x-ray structures of the PC577 light harvesting complex and corresponding photoacclimated complex. We find that neither the protein sequences, nor the protein structures are modified by photoacclimation. We conclude that cryptophyte algae change a chromophore in one site of their phycobiliprotein beta-subunits as part of the photoacclimation response to changes in the spectral quality of light. Ultrafast pump-probe spectroscopy shows that the energy transfer is weakly affected by the photoacclimation.

2017 ◽  
Vol 217 ◽  
pp. 38-43 ◽  
Author(s):  
Claudia Büchel ◽  
Christian Wilhelm ◽  
Volker Wagner ◽  
Maria Mittag

Science ◽  
2018 ◽  
Vol 360 (6393) ◽  
pp. 1109-1113 ◽  
Author(s):  
Xiaowei Pan ◽  
Jun Ma ◽  
Xiaodong Su ◽  
Peng Cao ◽  
Wenrui Chang ◽  
...  

Plants regulate photosynthetic light harvesting to maintain balanced energy flux into photosystems I and II (PSI and PSII). Under light conditions favoring PSII excitation, the PSII antenna, light-harvesting complex II (LHCII), is phosphorylated and forms a supercomplex with PSI core and the PSI antenna, light-harvesting complex I (LHCI). Both LHCI and LHCII then transfer excitation energy to the PSI core. We report the structure of maize PSI-LHCI-LHCII solved by cryo–electron microscopy, revealing the recognition site between LHCII and PSI. The PSI subunits PsaN and PsaO are observed at the PSI-LHCI interface and the PSI-LHCII interface, respectively. Each subunit relays excitation to PSI core through a pair of chlorophyll molecules, thus revealing previously unseen paths for energy transfer between the antennas and the PSI core.


HortScience ◽  
2002 ◽  
Vol 37 (6) ◽  
pp. 954-958 ◽  
Author(s):  
Theresa Bosma ◽  
John M. Dole

Various postharvest treatments were evaluated for effect on longevity and quality of cut Campanula medium L. `Champion Blue' and `Champion Pink' stems. Stems stored at 2 °C either wet or dry had no difference in vase life or percent flowers opened; however, flowers stored dry had a slightly greater percentage of senesced flowers at termination. Increasing storage duration from 1 to 3 weeks decreased vase life. Stems pretreated for 4 hours with 38 °C floral solution (deionized water amended to pH 3.5 with citric acid and 200 mg·L-1 8-HQC) or a 1-MCP pulse followed by a 5% sucrose pulse solution produced the longest vase life (10.3 or 10.4 days, respectively). Flowers opening after treatments commenced were paler than those flowers already opened and a 24-hour pretreatment with 5% or 10% sucrose did not prevent this color reduction. Stems had an average vase life of only 3.3 days when placed in floral vase foam but lasted 10.0 days without foam. Optimum sucrose concentration was 1.0% to 2.0% for stems placed in 22 °C floral vase solution without foam and 4% for stems placed in foam. High (110 μmol·m-2·s-1) or low (10 μmol·m-2·s-1) light levels did not affect postharvest parameters, but the most recently opened flowers were paler under low light conditions than under high light conditions. Chemical names used: 8-hydroxyquinoline citrate (8-HQC); 1-methylcyclopropene (1-MCP).


2021 ◽  
Author(s):  
Yuval Mazor ◽  
Christopher Gorski ◽  
Reece Riddle ◽  
Hila Toporik ◽  
Zhen Da ◽  
...  

The moss Physcomitrium patens diverged from green algae shortly after the colonization of land by ancient plants. This colonization posed new environmental challenges which drove evolutionary processes. The photosynthetic machinery of modern flowering plants is adapted to the high light conditions on land. Red shifted Lhca4 antennae are present in the photosystem I light harvesting complex of many green lineage plants but absent from P. patens. The Cryo-EM structure of the P. patens photosystem I light harvesting complex I supercomplex (PSI-LHCI) at 2.8 Å reveals that Lhca4 is replaced by a unique Lhca2 paralogue in moss. This PSI-LHCI supercomplex also retains the PsaM subunit, present in cyanobacteria and several algal species but lost in higher plants, and the PsaO subunit responsible for binding light harvesting complex II. The blue shifted Lhca2 paralogue and chlorophyll b enrichment relative to higher plants make the P. patens PSI-LHCI spectroscopically unique among other green lineage supercomplexes. Overall, the structure represents an evolutionary intermediate PSI with the crescent shaped LHCI common in higher plants and contains a unique Lhca2 paralogue which facilitates the mosses adaptation to low light niches.


2014 ◽  
Vol 118 (38) ◽  
pp. 11172-11189 ◽  
Author(s):  
Nikki M. Magdaong ◽  
Amy M. LaFountain ◽  
Jordan A. Greco ◽  
Alastair T. Gardiner ◽  
Anne-Marie Carey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document