scholarly journals 3D Printed Reactors and Kessil Lamp Holders for Flow Photochemistry: Design and System Standardization

Author(s):  
Matthew Penny ◽  
Stephen Hilton

A low-cost 3D printed standardized flow-photochemistry setup has been designed and developed for use with a pressure-driven flow system using photochemistry lamps available in most laboratories. In this research, photochemical reactors were 3D printed from polypropylene which facilitated rapid optimization of both reactor geometry and experimental setup of the lamp housing system. To exemplify the rapidity of this approach to optimization, a Kessil LED lamp was used in the bromination of a range of toluenes in the 3D printed reactors in good yields with residence times as low as 27 seconds. The reaction compared favorably with the batch photochemical procedure and was able to be scaled up to a productivity of 75 mmol h-1.

Author(s):  
Matthew R. Penny ◽  
Natalie Tsui ◽  
Stephen T. Hilton

Abstract Continuous flow chemistry is undergoing rapid growth and adoption within the pharmaceutical industry due to its ability to rapidly translate chemical discoveries from medicinal chemistry laboratories into process laboratories. Its growing significance means that it is imperative that flow chemistry is taught and experienced by both undergraduate and postgraduate synthetic chemists. However, whilst flow chemistry has been incorporated by industry, there remains a distinct lack of practical training and knowledge at both undergraduate and postgraduate levels. A key challenge associated with its implementation is the high cost (>$25,000) of the system’s themselves, which is far beyond the financial reach of most universities and research groups, meaning that this key technology remains open to only a few groups and that its associated training remains a theoretical rather than a practical subject. In order to increase access to flow chemistry, we sought to design and develop a small-footprint, low-cost and portable continuous flow system that could be used to teach flow chemistry, but that could also be used by research groups looking to transition to continuous flow chemistry. A key element of its utility focusses on its 3D printed nature, as low-cost reactors could be readily incorporated and modified to suit differing needs and educational requirements. In this paper, we demonstrate the system’s flexibility using reactors and mixing chips designed and 3D printed by an undergraduate project student (N.T.) and show how the flexibility of the system allows the investigation of differing flow paths on the same continuous flow system in parallel.


2019 ◽  
Author(s):  
Matthew Penny, ◽  
Zenobia Rao ◽  
Bruno Peniche ◽  
Stephen Hilton

In this present study, we describe the development of a low-cost, small-footprint and modular 3D printed continuous-flow system that readily attaches to existing stirrer hotplates. Flow-rates are controlled by compressed air that is typically present in all fume hoods, making it suitable for use by synthetic chemists. The length of the flow-path and reaction residence time is regulated by control of the air-flow and pressure and by addition of one or more 3D printed polypropylene (PP) circular disk reactors that were designed to fit a DrySyn Multi-E base which is found in most synthetic laboratories. The ease of use of the system, the facile control of flow-rates and the solvent resistance of the PP reactors was demonstrated in a range of SNAr reactions to produce substituted ether derivatives highlighting the utility and modularity of the system.<br>


2019 ◽  
Author(s):  
Matthew Penny, ◽  
Zenobia Rao ◽  
Bruno Peniche ◽  
Stephen Hilton

In this present study, we describe the development of a low-cost, small-footprint and modular 3D printed continuous-flow system that readily attaches to existing stirrer hotplates. Flow-rates are controlled by compressed air that is typically present in all fume hoods, making it suitable for use by synthetic chemists. The length of the flow-path and reaction residence time is regulated by control of the air-flow and pressure and by addition of one or more 3D printed polypropylene (PP) circular disk reactors that were designed to fit a DrySyn Multi-E base which is found in most synthetic laboratories. The ease of use of the system, the facile control of flow-rates and the solvent resistance of the PP reactors was demonstrated in a range of SNAr reactions to produce substituted ether derivatives highlighting the utility and modularity of the system.<br>


2020 ◽  
Author(s):  
Merel van der Stelt ◽  
Martin P. Grobusch ◽  
Abdul R. Koroma ◽  
Marco Papenburg ◽  
Ismaila Kebbie ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1977
Author(s):  
Ricardo Oliveira ◽  
Liliana M. Sousa ◽  
Ana M. Rocha ◽  
Rogério Nogueira ◽  
Lúcia Bilro

In this work, we demonstrate for the first time the capability to inscribe long-period gratings (LPGs) with UV radiation using simple and low cost amplitude masks fabricated with a consumer grade 3D printer. The spectrum obtained for a grating with 690 µm period and 38 mm length presented good quality, showing sharp resonances (i.e., 3 dB bandwidth < 3 nm), low out-of-band loss (~0.2 dB), and dip losses up to 18 dB. Furthermore, the capability to select the resonance wavelength has been demonstrated using different amplitude mask periods. The customization of the masks makes it possible to fabricate gratings with complex structures. Additionally, the simplicity in 3D printing an amplitude mask solves the problem of the lack of amplitude masks on the market and avoids the use of high resolution motorized stages, as is the case of the point-by-point technique. Finally, the 3D printed masks were also used to induce LPGs using the mechanical pressing method. Due to the better resolution of these masks compared to ones described on the state of the art, we were able to induce gratings with higher quality, such as low out-of-band loss (0.6 dB), reduced spectral ripples, and narrow bandwidths (~3 nm).


HardwareX ◽  
2021 ◽  
pp. e00214
Author(s):  
David T. McCarthy ◽  
Baiqian Shi ◽  
Miao Wang ◽  
Stephen Catsamas
Keyword(s):  
Low Cost ◽  

Author(s):  
Romain Nicot ◽  
Edwige Hurteloup ◽  
Sébastien Joachim ◽  
Charles Druelle ◽  
Jean-Marc Levaillant

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2518
Author(s):  
Nunzio Cennamo ◽  
Lorena Saitta ◽  
Claudio Tosto ◽  
Francesco Arcadio ◽  
Luigi Zeni ◽  
...  

In this work, a novel approach to realize a plasmonic sensor is presented. The proposed optical sensor device is designed, manufactured, and experimentally tested. Two photo-curable resins are used to 3D print a surface plasmon resonance (SPR) sensor. Both numerical and experimental analyses are presented in the paper. The numerical and experimental results confirm that the 3D printed SPR sensor presents performances, in term of figure of merit (FOM), very similar to other SPR sensors made using plastic optical fibers (POFs). For the 3D printed sensor, the measured FOM is 13.6 versus 13.4 for the SPR-POF configuration. The cost analysis shows that the 3D printed SPR sensor can be manufactured at low cost (∼15 €) that is competitive with traditional sensors. The approach presented here allows to realize an innovative SPR sensor showing low-cost, 3D-printing manufacturing free design and the feasibility to be integrated with other optical devices on the same plastic planar support, thus opening undisclosed future for the optical sensor systems.


Sign in / Sign up

Export Citation Format

Share Document