scholarly journals Spatiotemporal urban water profiling for the assessment of environmental and public exposure to antimicrobials (antibiotics, antifungals, and antivirals) in the Eerste River Catchment, South Africa

Author(s):  
Barbara Kasprzyk-Hordern ◽  
ELizabeth Holton ◽  
Edward Archer ◽  
James Fidal ◽  
Thomas Kjeldson ◽  
...  

Antibiotic usage, excretion, and persistence are all important factors in association with the occurrence and dissemination of antimicrobial resistance. Urban water profiling was utilised in the Eerste River catchment (South Africa) to establish antibiotic usage in a catchment where comprehensive prescription records were not readily available and where portions of the community did not have sufficient access to sanitation. This technique enabled the environmental exposure to be quantified throughout the catchment area and the identification of contamination hotspots. Monitoring occurred over a 10-month period. 812 samples were processed using UPLC-MS/MS for the quantitation of 56 antimicrobials and 26 of their metabolites. Spatiotemporal trends were established, with consideration to community behaviour, seasonal changes, and physiochemical properties of the analytes. The Eerste River samples collected upstream from the town of Stellenbosch had the lowest antibiotic loads (< 4 g/day), unafflicted by industrial presence and with only small impact from farming activity. This was followed by sites downstream from a treated wastewater treatment plant (serving 178K people) discharge point (influent: 500-800 g/day and effluent 50-100 g/day), which indicates a high efficiency of wastewater treatment allowing for an effective reduction of ABs and a lower environmental burden compared to the river sites receiving untreated waste from communities in informal settlements (6-12K people) that are not connected to the sewer infrastructure (with AB levels accounting for 100-600 g/day). Temporal trends exhibited reduced daily loads during the summer to early autumn. This is likely due to seasonal patterns in community health. However, weather patterns are also important to consider – particularly for the river sites. South Africa has notable rainfall and temperature seasonality. ARVs, emtricitabine and lamivudine, were the most prevalent drugs throughout the monitoring campaign, followed by tuberculosis drugs and sulfonamides. ARVs were, however, effectively reduced via wastewater treatment processes (>97%). This was also the case for beta-lactams, nitrofurantoin, and trimethoprim. The treatment efficacy for other drugs was more variable, that did not appear to have temporal significance.

2021 ◽  
Author(s):  
ELizabeth Holton ◽  
Edward Archer ◽  
James Fidal ◽  
Thomas Kjeldson ◽  
Gideon Wolfaardt ◽  
...  

Antibiotic usage, excretion, and persistence are all important factors in association with the occurrence and dissemination of antimicrobial resistance. Urban water profiling was utilised in the Eerste River catchment (South Africa) to establish antibiotic usage in a catchment where comprehensive prescription records were not readily available and where portions of the community did not have sufficient access to sanitation. This technique enabled the environmental exposure to be quantified throughout the catchment area and the identification of contamination hotspots. Monitoring occurred over a 10-month period. 812 samples were processed using UPLC-MS/MS for the quantitation of 56 antimicrobials and 26 of their metabolites. Spatiotemporal trends were established, with consideration to community behaviour, seasonal changes, and physiochemical properties of the analytes. The Eerste River samples collected upstream from the town of Stellenbosch had the lowest antibiotic loads (< 4 g/day), unafflicted by industrial presence and with only small impact from farming activity. This was followed by sites downstream from a treated wastewater treatment plant (serving 178K people) discharge point (influent: 500-800 g/day and effluent 50-100 g/day), which indicates a high efficiency of wastewater treatment allowing for an effective reduction of ABs and a lower environmental burden compared to the river sites receiving untreated waste from communities in informal settlements (6-12K people) that are not connected to the sewer infrastructure (with AB levels accounting for 100-600 g/day). Temporal trends exhibited reduced daily loads during the summer to early autumn. This is likely due to seasonal patterns in community health. However, weather patterns are also important to consider – particularly for the river sites. South Africa has notable rainfall and temperature seasonality. ARVs, emtricitabine and lamivudine, were the most prevalent drugs throughout the monitoring campaign, followed by tuberculosis drugs and sulfonamides. ARVs were, however, effectively reduced via wastewater treatment processes (>97%). This was also the case for beta-lactams, nitrofurantoin, and trimethoprim. The treatment efficacy for other drugs was more variable, that did not appear to have temporal significance.


2019 ◽  
Vol 41 (1) ◽  
pp. 47-54
Author(s):  
Magdalena Domańska ◽  
Anna Boral ◽  
Kamila Hamal ◽  
Magdalena Kuśnierz ◽  
Janusz Łomotowski ◽  
...  

AbstractThe increasingly stringent requirements for wastewater treatment enforce the adoption of technologies that reduce pollution and minimize waste production. By combining the typical activated sludge process with membrane filtration, biological membrane reactors (MBR) offer great technological potential in this respect. The paper presents the principles and effectiveness of using an MBR at the Głogów Małopolski operation. Physicochemical tests of raw and treated wastewater as well as microscopic analyses with the use of the FISH (fluorescence in situ hybridization) method were carried out. Moreover, the level of electric energy consumption during the operation of the wastewater treatment plant and problems related to fouling were also discussed. A wastewater quality analysis confirmed the high efficiency of removing organic impurities (on average 96% in case of BOD5 and 94% in case of COD) and suspension (on average 93%).


2018 ◽  
Author(s):  
Olayinka Osuolale ◽  
Anthony Okoh

ABSTRACTBackgroundPoorly or partially treated wastewater disposed of can contaminate water and even properly treated sewage can have its problems. The highlight of this danger is wastewater treatment plants serving as reservoir for proliferation of antibiotic resistant organisms. We have reported the state of two wastewater treatment in the Eastern Cape of South Africa which discharge poorly and partially treated effluents. Our aims to identify Vibrio spp. and their antibiotic profiles in treated final effluent discharge from wastewater treatment plant.MethodsCulture based approach using the TCBS agar for isolationVibriospp., presumptive isolates were purified and confirmed using PCR. The confirmed isolated were also genotyped to identify the species present. The antibiotic profiling of the confirmed isolates was using the CLSI recommended first line antibiotics for Vibrio.ResultsOut of the 786 presumptive isolates, 374 were confirmed asVibriospp. None of the Vibrio spp. pathotypes were present in the confirmed isolates. Randomized isolates of 100 Vibrio spp. were selected, > 90 % of the isolates were susceptible to Ciprofloxacin, and > 50 – 80 % for Ampicillin, Chloramphenicol, Tetracycline, Cefotaxime, and Trimethoprim-sulfamethoxazole respectively.ConclusionsWe are able to isolate Vibrio spp. from treated effluents but none of their pathotypes were present. The antibiotic agents considered for primary testing which are ciprofloxacin was the most effective of the antibiotic drugs, followed by cefotaxime, tetracycline with less susceptibility. Contamination from discharged effluents from wastewater treatment can lead to spread of spread of disease in this environment. The WWTPs studied are sources of pollution to surface water with environmental and public health.


1995 ◽  
Vol 31 (7) ◽  
pp. 201-212 ◽  
Author(s):  
H. Løkkegaard Bjerre ◽  
T. Hvitved-Jacobsen ◽  
B. Teichgräber ◽  
D. te Heesen

The Emscher river in the Ruhr district, Germany, is at present acting as a large wastewater collector receiving untreated and mechanically treated wastewater. Before the Emscher flows into the river Rhine, treatment takes place in a biological wastewater treatment plant. The transformations of the organic matter in the Emscher affect the river catchment, the subsequent treatment and the river quality. This paper focuses on evaluation of methods for quantification of the microbial transformations of wastewater in the Emscher with emphasis on characterization of wastewater quality changes in terms of biodegradability of organic matter and viable biomass. The characterization is based on methods taken from the activated sludge process in wastewater treatment. Methods were evaluated on the basis of laboratory investigations of water samples from the Emscher. Incubation in batch reactors under aerobic, anoxic and anaerobic conditions were made and a case study was performed. The methods described will be used in an intensive study of wastewater transformations in the Emscher river. This study will be a basis for future investigations of wastewater quality changes in the Emscher.


2001 ◽  
Vol 43 (2) ◽  
pp. 91-99 ◽  
Author(s):  
T. Iwane ◽  
T. Urase ◽  
K. Yamamoto

Escherichia coli and coliform group bacteria resistant to seven antibiotics were investigated in the Tama River, a typical urbanized river in Tokyo, Japan, and at a wastewater treatment plant located on the river. The percentages of antibiotic resistance in the wastewater effluent were, in most cases, higher than the percentages in the river water, which were observed increasing downstream. Since the possible increase in the percentages in the river was associated with treated wastewater discharges, it was concluded that the river, which is contaminated by treated wastewater with many kinds of pollutants, is also contaminated with antibiotic resistant coliform group bacteria and E.coli. The percentages of resistant bacteria in the wastewater treatment plant were mostly observed decreasing during the treatment process. It was also demonstrated that the percentages of resistance in raw sewage are significantly higher than those in the river water and that the wastewater treatment process investigated in this study works against most of resistant bacteria in sewage.


2017 ◽  
Vol 77 (2) ◽  
pp. 337-345 ◽  
Author(s):  
I. Brückner ◽  
K. Kirchner ◽  
Y. Müller ◽  
S. Schiwy ◽  
K. Klaer ◽  
...  

Abstract The project DemO3AC (demonstration of large-scale wastewater ozonation at the Aachen-Soers wastewater treatment plant, Germany) of the Eifel-Rur Waterboard contains the construction of a large-scale ozonation plant for advanced treatment of the entire 25 million m³/yr of wastewater passing through its largest wastewater treatment plant (WWTP). In dry periods, up to 70% of the receiving water consists of treated wastewater. Thus, it is expected that effects of ozonation on downstream water biocoenosis will become observable. Extensive monitoring of receiving water and the WWTP shows a severe pollution with micropollutants (already prior to WWTP inlet). (Eco-)Toxicological investigations showed increased toxicity at the inlet of the WWTP for all assays. However, endocrine-disrupting potential was also present at other sampling points at the WWTP and in the river and could not be eliminated sufficiently by the WWTP. Total cell counts at the WWTP are slightly below average. Investigations of antibiotic resistances show no increase after the WWTP outlet in the river. However, cells carrying antibiotic-resistant genes seem to be more stress resistant in general. Comparing investigations after implementation of ozonation should lead to an approximation of the correlation between micropollutants and water quality/biocoenosis and the effects that ozonation has on this matter.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2764
Author(s):  
Argyro Plevri ◽  
Klio Monokrousou ◽  
Christos Makropoulos ◽  
Christos Lioumis ◽  
Nikolaos Tazes ◽  
...  

Water reuse and recycling is gaining momentum as a way to improve the circularity of cities, while recognizing the central role of water within a circular economy (CE) context. However, such interventions often depend on the location of wastewater treatment plants and the treatment technologies installed in their premises, while relying on an expensive piped network to ensure that treated wastewater gets transported from the treatment plant to the point of demand. Thus, the penetration level of treated wastewater as a source of non-potable supply in dense urban environments is limited. This paper focuses on the demonstration of a sewer mining (SM) unit as a source of treated wastewater, as part of a larger and more holistic configuration that examines all three ‘streams’ associated with water in CE: water, energy and materials. The application area is the Athens Plant Nursery, in the (water stressed) city of Athens, Greece. SM technology is in fact a mobile wastewater treatment unit in containers able to extract wastewater from local sewers, treat it directly and reuse at the point of demand even in urban environments with limited space. The unit consists of a membrane bioreactor unit (MBR) and a UV disinfection unit and produces high quality reclaimed water for irrigation and also for aquifer recharge during the winter. Furthermore, a short overview of the integrated nutrient and energy recovery subsystem is presented in order to conceptualise the holistic approach and circularity of the whole configuration. The SM technology demonstrates flexibility, scalability and replicability, which are important characteristics for innovation uptake within the emerging CE context and market.


2013 ◽  
Vol 68 (2) ◽  
pp. 433-440 ◽  
Author(s):  
Wanhui Zhang ◽  
Chaohai Wei ◽  
Chunhua Feng ◽  
Yuan Ren ◽  
Yun Hu ◽  
...  

The occurrence of 14 phenolic compounds (PCs) was assessed in the raw, treated wastewater, dewatered sludge and gas samples from a coking wastewater treatment plant (WWTP) in China. It was found that 3-cresol was the dominant compound in the raw coking wastewater with a concentration of 183 mg L−1, and that chlorophenols and nitrophenols were in the level of μg L−1. Phenol was the dominant compound in the gas samples, while 2,4,6-trichlorophenol predominated in the dewatered sludge sample. The anaerobic and aerobic tanks played key roles in the elimination of chlorophenols and phenols, respectively. Analysis of daily mass flows of PCs in WWTP showed that 89–98% of phenols and 83–89% of nitrophenols were biodegraded, and that 44–69% of chlorophenols were adsorbed to sludge, indicating that the fate of PCs was highly influenced by their biodegradability and physical–chemical property.


Sign in / Sign up

Export Citation Format

Share Document