scholarly journals Accurate Simulations of Lipid Monolayers Require a Water Model With Correct Surface Tension

Author(s):  
Carmelo Tempra ◽  
O.H. Samuli Ollila ◽  
Matti Javanainen

Lipid monolayers provide our lungs and eyes their functionality, and serve as proxy systems in biomembrane research. Therefore, lipid monolayers have been studied intensively also using molecular dynamics simulations, which are able to probe their lateral structure and interactions with, e.g., pharmaceuticals or nanoparticles. However, such simulations have struggled in describing the forces at the air–water interface. Particularly the surface tension of water and long-range van der Waals interactions have been considered critical, but their importance in monolayer simulations has been evaluated only separately. Here we combine the recent C36/LJ-PME lipid force field that in- cludes long-range van der Waals forces with water models that reproduce experimental surface tensions to elucidate the importance of these contributions in monolayer simulations. Our results suggest that a water model with correct surface tension is necessary to reproduce experimental surface pressure–area isotherms and monolayer phase behavior, while standard cutoff-based CHARMM36 lipid model with the 4-point OPC water model still provides the best agreement with experiments. Our results emphasize the importance of using high quality water models in applications and parameter development in molecular dynamics simulations of biomolecules.

Author(s):  
Sachini P. Kadaoluwa Pathirannahalage ◽  
Nastaran Meftahi ◽  
Aaron Elbourne ◽  
Alessia C. G. Weiss ◽  
Chris F. McConville ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1059
Author(s):  
Sanghun Lee ◽  
Curtis W. Frank ◽  
Do Y. Yoon

Molecular dynamics simulations of free-standing thin films of neat melts of polyethylene (PE) chains up to C150H302 and their binary mixtures with n-C13H28 are performed employing a united atom model. We estimate the surface tension values of PE melts from the atomic virial tensor over a range of temperatures, which are in good agreement with experimental results. Compared with short n-alkane systems, there is an enhanced surface segregation of methyl chain ends in longer PE chains. Moreover, the methyl groups become more segregated in the surface region with decreasing temperature, leading to the conclusion that the surface-segregation of methyl chain ends mainly arises from the enthalpic origin attributed to the lower cohesive energy density of terminal methyl groups. In the mixtures of two different chain lengths, the shorter chains are more likely to be found in the surface region, and this molecular segregation in moderately asymmetric mixtures in the chain length (C13H28 + C44H90) is dominated by the enthalpic effect of methyl chain ends. Such molecular segregation is further enhanced and dominated by the entropic effect of conformational constraints in the surface for the highly asymmetric mixtures containing long polymer chains (C13H28 + C150H3020). The estimated surface tension values of the mixtures are consistent with the observed molecular segregation characteristics. Despite this molecular segregation, the normalized density of methyl chain ends of the longer chain is more strongly enhanced, as compared with the all-segment density of the longer chain itself, in the surface region of melt mixtures. In addition, the molecular segregation results in higher order parameter of the shorter-chain segments at the surface and deeper persistence of surface-induced segmental order into the film for the longer chains, as compared with those in neat melt films.


Sign in / Sign up

Export Citation Format

Share Document