scholarly journals Opportunistic Channel Allocation Model in Collocated Primary Cognitive Network

Author(s):  
Mangala Prasad Mishra ◽  
Sunil Kumar Singh ◽  
Deo Prakash Vidyarthi

The growing demand of radio spectrum to facilitate the primary/secondary users in a cellular network is a challenging task. Many channel allocation models, applying cognition, have been proposed to increase the radio spectrum utilization. The proposed model peruses three types of users: primary users (PUs), opportunistic primary users (OPUs), and secondary users (SUs) that use the radio resources in collocated primary base stations. Out of these users, the opportunistic primary users and secondary users may request for handover as per their requirements. The objective of the model is to enhance the radio spectrum utilization by the opportunistic utilization of radio resources by OPUs and by enabling cognitive radio base stations to collect free channel information dynamically. The cognitive radio base station maintains the centralized free channel at collocated primary base stations to facilitate the SUs opportunistically. The proposed channel allocation technique maintains the Quality of Experience (QoE) of the users as well. The performance analysis of the model is done by simulation which diversifies the importance of the proposed model in the view of minimum blocked services.

Author(s):  
K. Annapurna ◽  
B. Seetha Ramanjaneyulu

Satisfying the Quality of Service (QoS) is often a challenge in cognitive radio networks, because they depend on opportunistic channel accessing. In this context, appropriate pricing of vacant channels that is linked to the preference in their allocation, is found to be useful. However, ambiguity on the possible price at which the channel would be allotted is still a concern. In this work, an auction mechanism in which maximum value of the bid is predefined is proposed. With this, users quote their bid values as per their needs of getting the channels, up to the predefined maximum allowed bid price. However, final price of allocation is decided based on the sum total demand from all the users and the availability of vacant channels. Performance of the system is found in terms of blocking probabilities of secondary users and revenues to primary users. The proposed system is found to yield similar quantum of revenues as that of the Generalized Second Price (GSP) auction, while offering much lesser blocking probabilities to high-priority users to satisfy their QoS requirements.


Author(s):  
Saed Alrabaee ◽  
Mahmoud Khasawneh ◽  
Anjali Agarwal

Cognitive radio technology is the vision of pervasive wireless communications that improves the spectrum utilization and offers many social and individual benefits. The objective of the cognitive radio network technology is to use the unutilized spectrum by primary users and fulfill the secondary users' demands irrespective of time and location (any time and any place). Due to their flexibility, the Cognitive Radio Networks (CRNs) are vulnerable to numerous threats and security problems that will affect the performance of the network. Little attention has been given to security aspects in cognitive radio networks. In this chapter, the authors discuss the security issues in cognitive radio networks, and then they present an intensive list of the main known security threats in CRN at various layers and the adverse effects on performance due to such threats, and the current existing paradigms to mitigate such issues and threats. Finally, the authors highlight proposed directions in order to make CRN more authenticated, reliable, and secure.


Big Data ◽  
2016 ◽  
pp. 1326-1346
Author(s):  
Saed Alrabaee ◽  
Mahmoud Khasawneh ◽  
Anjali Agarwal

Cognitive radio technology is the vision of pervasive wireless communications that improves the spectrum utilization and offers many social and individual benefits. The objective of the cognitive radio network technology is to use the unutilized spectrum by primary users and fulfill the secondary users' demands irrespective of time and location (any time and any place). Due to their flexibility, the Cognitive Radio Networks (CRNs) are vulnerable to numerous threats and security problems that will affect the performance of the network. Little attention has been given to security aspects in cognitive radio networks. In this chapter, the authors discuss the security issues in cognitive radio networks, and then they present an intensive list of the main known security threats in CRN at various layers and the adverse effects on performance due to such threats, and the current existing paradigms to mitigate such issues and threats. Finally, the authors highlight proposed directions in order to make CRN more authenticated, reliable, and secure.


Author(s):  
Jayashree Agarkhed ◽  
Veeranna Gatate

Wireless sensor networks (WSNs) operate in an overcrowded electromagnetic environment, as the spectrum is shared by various wireless communication technologies. This gives rise to various challenges related to optimized and efficient spectrum utilization. Cognitive radio (CR) has emerged as a solution satisfying this requirement, as it is capable of adapting to the dynamic radio spectrum. Thanks to the deployment of cognitive radio in WSNs, the spectrum may be utilized in a more efficient manner. CR may identify the vacant channels dynamically, allowing the sensor nodes to effectively communicate with each other. In this paper a clustering algorithm known as improved cluster-based channel assignment (ICBCA) is implemented, forming clusters of CR sensor nodes and then selecting vacant channels for data transmission purposes. Simulation results show that ICBCA outperforms existing clustering algorithms in CR sensor networks


Author(s):  
Sylwia Romaszko ◽  
Petri Mähönen

In the case of Opportunistic Spectrum Access (OSA), unlicensed secondary users have only limited knowledge of channel parameters or other users' information. Spectral opportunities are asymmetric due to time and space varying channels. Owing to this inherent asymmetry and uncertainty of traffic patterns, secondary users can have trouble detecting properly the real usability of unoccupied channels and as a consequence visiting channels in such a way that they can communicate with each other in a bounded period of time. Therefore, the channel service quality, and the neighborhood discovery (NB) phase are fundamental and challenging due to the dynamics of cognitive radio networks. The authors provide an analysis of these challenges, controversies, and problems, and review the state-of-the-art literature. They show that, although recently there has been a proliferation of NB protocols, there is no optimal solution meeting all required expectations of CR users. In this chapter, the reader also finds possible solutions focusing on an asynchronous channel allocation covering a channel ranking.


2013 ◽  
Vol 4 (4) ◽  
pp. 1-15
Author(s):  
Yanxiao Zhao ◽  
Bighnaraj Panigrahi ◽  
Kazem Sohraby ◽  
Wei Wang

Cognitive radio networks (CRNs) have received considerable attention and viewed as a promising paradigm for future wireless networking. Its major difference from the traditional wireless networks is that secondary users are allowed to access the channel if they pose no harmful interference to primary users. This distinct feature of CRNs has raised an essential and challenging question, i.e., how to accurately estimate interference to the primary users from the secondary users? In addition, spectrum sensing plays a critical role in CRNs. Secondary users have to sense the channel before they transmit. A two-state sensing model is commonly used, which classifies a channel into either busy or idle state. Secondary users can only utilize a channel when it is detected to be in idle state. In this paper, we tackle the estimation of interference at the primary receiver due to concurrently active secondary users. With the spectrum sensing, secondary users are refrained from transmitting once an active user falls into their sensing range. As a result, the maximum number of simultaneously interfering secondary users is bounded, typically ranging from 1 to 4. This significant conclusion considerably simplifies interference modeling in CRNs. The authors present all the cases with possible simultaneously interfering secondary users. Moreover, the authors derive the probability for each case. Extensive simulations are conducted and results validate the effectiveness and accuracy of the proposed approach.


2020 ◽  
Vol 16 (3) ◽  
pp. 155014772091294
Author(s):  
Jing Wang ◽  
Huyin Zhang ◽  
Sheng Hao ◽  
Chuhao Fu

The Internet of vehicles is an essential component for building smart cities that can improve traffic safety and provide multimedia entertainment services. The cognitive radio–enabled Internet of vehicles was proposed to resolve the conflict between the increasing demand of Internet of vehicles applications and the limited spectrum resources. The multi-hop transmission is one of the most important issues in cognitive radio–enabled Internet of vehicles networks. Nevertheless, most existing forwarding solutions designed for the cognitive radio–enabled Internet of vehicles did not consider the urban expressway scenario, where primary base stations are densely installed with small coverage areas. In this case, it is difficult to ensure that the sender and the receiver of the same cognitive radio link have similar channel availability statistics, which makes cognitive radio links more likely to be interrupted. To address this challenge, we develop a multi-hop forwarding scheme to minimize the end-to-end delay for such networks. We first formulate the delay minimization problem as a non-linear integer optimization problem. Then, we propose an approach to select the relay candidates by jointly considering the high mobility of vehicles and the unique cognitive radio spectrum usage distributions in urban expressway scenarios. Finally, we propose the low-latency forwarding strategies by considering the channel availability and the delay cost of different situations of relay candidates. Simulations show the advantages of our proposed scheme, compared with state-of-art methods.


2018 ◽  
Vol 7 (2.30) ◽  
pp. 27
Author(s):  
Aishwarya Sagar Anand Ukey ◽  
Meenu Chawla

Cognitive radio (CR) is an emerging technology developed for efficient utilization of the radio spectrum. CRN utilizes CR technology and enables the unlicensed users also referred as secondary users (SUs) to access free portions of the licensed spectrum in an opportunistic manner. To support scalability and stability in distributed CRNs also referred as cognitive radio ad hoc networks (CRAHNs), SUs are often organized into smaller groups known as clusters. Spectrum aware clustering is considered as the key technique to overcome numerous is-sues associated with the dynamic nature of CRAHNs. This article focuses on clustering in CRAHNs and presents a comprehensive review of various spectrum aware clustering algorithms presented in the literature. The article highlights notable clustering metrics and includes the description of cluster formation and maintenance process. The article also renders potential research gaps in existing research works and discusses open challenges and issues that need to be addressed for efficient clustering in CRAHNs. 


Sign in / Sign up

Export Citation Format

Share Document