scholarly journals Age Based Overhaul Policy for Multiple Repairable Systems with Imperfect Maintenance: Case Study of Aero Engines

Author(s):  
Garima Sharma ◽  
Rajiv Nandan Rai

Reliability analysis of complex multiple repairable systems (MRS) such as aero engines, rolling stocks and nuclear power plants has always been an area of interest for the research fraternity. An appropriate age based overhaul maintenance policy for such systems can provide impetus to the operations. The paper proposes two different age based maintenance policies; Policy-I and Policy-II, to evaluate the overhaul time of an aero engine, where Policy-I considers MRS with imperfect corrective maintenance (CM), whereas Policy-II examines MRS with both imperfect CM and preventive maintenance (PM). The paper then provides a spare parts estimation model for both the policies. The developed policies and spares parts model are validated by considering field failure data of aero engines as a case and the obtained results are compared with the existing time based maintenance policy used for aero engines. The paper recommends the best policy to be used for MRS in general and the considered case in particular.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Garima Sharma ◽  
Rajiv Nandan Rai

PurposeDegradation of repairable components may not be similar after each maintenance activity; thus, the classic (traditional-time based) maintenance policies, which consider preventive maintenance (PM), age-based maintenance and overhauls to be done at fixed time interval, may fail to monitor the exact condition of the component. Thus, a progressive maintenance policy (PMP) may be more appropriate for the industries that deal with large, complex and critical repairable systems (RS) such as aerospace industries, nuclear power plants, etc.Design/methodology/approachA progressive maintenance policy is developed, in which hard life, PM scheduled time and overhaul period of the system are revised after each service activity by adjusting PM interval and mean residual life (MRL) such that the risk of failure is not increased.FindingsA comparative study is then carried out between the classic PM policy and developed PMP, and the improvement in availability, mean time between failures and reduction in maintenance cost is registered.Originality/valueThe proposed PMP takes care of the equipment degradation more efficiently than any other existing maintenance policies and is also flexible in its application as the policy can be continuously amended as per the failure profile of the equipment. Similar maintenance policies assuming lifetime distributions are available in the literature, but to ascertain that the proposed PMP is more suitable and applicable to the industries, this paper uses Kijima-based imperfect maintenance models. The proposed PMP is demonstrated through a real-time data set example.


Author(s):  
Enrico Deri ◽  
Joël Nibas ◽  
Olivier Ries ◽  
André Adobes

Flow-induced vibrations of Steam Generator tube bundles are a major concern for the operators of nuclear power plants. In order to predict damages due to such vibrations, EDF has developed the numerical tool GeViBus, which allows one to asses risk and thereafter to optimize the SG maintenance policy. The software is based on a semi analytical model of fluid-dynamic forces and dimensionless fluid force coefficients which need to be assessed by experiment. The database of dimensionless coefficients is updated in order to cover all existing tube bundle configurations. Within this framework, a new test rig was presented in a previous conference with the aim of assessing parallel triangular tube arrangement submitted to a two-phase cross-flow. This paper presents the result of the first phase of the associated experiments in terms of force coefficients and two-phase flow excitation spectra for both in-plane and out-of-plane vibration.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Ruifeng Yang ◽  
Jianshe Kang ◽  
Zhenya Quan

Nuclear power plants are highly complex systems and the issues related to their safety are of primary importance. Probabilistic safety assessment is regarded as the most widespread methodology for studying the safety of nuclear power plants. As maintenance is one of the most important factors for affecting the reliability and safety, an enhanced preventive maintenance optimization model based on a three-stage failure process is proposed. Preventive maintenance is still a dominant maintenance policy due to its easy implementation. In order to correspond to the three-color scheme commonly used in practice, the lifetime of system before failure is divided into three stages, namely, normal, minor defective, and severe defective stages. When the minor defective stage is identified, two measures are considered for comparison: one is that halving the inspection interval only when the minor defective stage is identified at the first time; the other one is that if only identifying the minor defective stage, the subsequent inspection interval is halved. Maintenance is implemented immediately once the severe defective stage is identified. Minimizing the expected cost per unit time is our objective function to optimize the inspection interval. Finally, a numerical example is presented to illustrate the effectiveness of the proposed models.


Author(s):  
В. Козлов ◽  
V. Kozlov ◽  
Андрей Гарнов ◽  
Andrey Garnov ◽  
Юрий Одегов ◽  
...  

In the last 20 years in the Russian society and in the government there are discussions on the need to "get off the oil needle." The situation in the Russian economy dictates measures to further diversify exports, based on the export of "high technology". This article describes the history of the company, which for the past two decades has survived in a very difficult situation and, practically without the help of the state, has found new partners who want to order the construction of nuclear power plants in their country. It must be borne in mind that when building a nuclear power plant abroad, a basis is created for long-term economic cooperation between Russia and other countries, which makes it possible to implement with high efficiency a large volume of related services, such as: • transfer of licenses and know-how, design and survey works, supply of complete equipment and spare parts, engineering consulting services; • provides employment of the population within the country (about 300 enterprises and tens of thousands of employees participate in the NPP project abroad as subcontractors); • increases the availability of regional budgets; • increases globally the competitiveness of Russian equipment in particular and Russian high technologies in general.


Author(s):  
Allan J. Volponi

Engine diagnostic practices are as old as the gas turbine itself. Monitoring and analysis methods have progressed in sophistication over the past 6 decades as the gas turbine evolved in form and complexity. While much of what will be presented here may equally apply to both stationary power plants and aero-engines, the emphasis will be on aero propulsion. Beginning with primarily empirical methods centering around monitoring the mechanical integrity of the machine, the evolution of engine diagnostics has benefited from advances in sensing, electronic monitoring devices, increased fidelity in engine modeling and analytical methods. The primary motivation in this development is, not surprisingly, cost. The ever increasing cost of fuel, engine prices, spare parts, maintenance and overhaul, all contribute to the cost of an engine over its entire life cycle. Diagnostics can be viewed as a means to mitigate risk in decisions that impact operational integrity. This can have a profound impact on safety, such as In-Flight Shut Downs (IFSD) for aero applications, (outages for land based applications) and economic impact caused by Unscheduled Engine Removals (UERs), part life, maintenance and overhaul and the overall logistics of maintaining an aircraft fleet or power generation plants. This paper will review some of the methods used in the preceding decades to address these issues, their evolution to current practices and some future trends. While several different monitoring and diagnostic systems will be addressed, the emphasis in this paper will be centered on those dealing with the aero-thermodynamic performance of the engine.


Author(s):  
Bengt Lydell ◽  
Alejandro Huerta ◽  
Karen Gott

Certain member countries of the Organisation for Economic Cooperation and Development (OECD) in 2002 established the OECD Pipe Failure Data Exchange Project (OPDE) to produce an international database on the piping service experience applicable to commercial nuclear power plants. OPDE is operated under the umbrella of the OECD Nuclear Energy Agency (NEA). The Project collects pipe failure data including service-induced wall thinning, part through-wall crack, pinhole leak, leak, and rupture/severance (i.e., events involving large leak rates up to and beyond the make-up capacity of engineered safeguards systems). The part through-wall events include degradation in excess of code allowable for pipe wall thinning or crack depth. OPDE also addresses such degradation that could have generic implications regarding the reliability of in-service inspection. At the end of 2006 the OPDE database included approximately 3,700 records on pipe failure affecting ASME Code Class 1 through 3 and non-Code piping. This paper summarizes the unique data quality considerations that are associated with the reporting and recording of piping component degradation and failure. The paper also summarizes the database content and puts it in perspective relative to past efforts to systematically collect and evaluate service experience data on piping performance.


Author(s):  
David Vaughan ◽  
Howard Levine ◽  
Paul Hassig ◽  
Robert Smilowitz

A common terrorist threat worldwide is the use of large vehicle bombs to attack high value targets. Detonation of large yield devices can cause significant damage to nearby buildings, facilities and infrastructure with potentially high loss of life and large economic losses. Blast pressures can have major consequences on critical facilities such as nuclear power plants, causing economic loss, environmental damage and system failure. Closely spaced structures in a dense configuration provide a complicated setting for evaluating airblast pressures caused by explosive devices. The presence of multiple buildings can channel the airblast, resulting in significant effects on load magnitudes at range from the detonation. Buildings reflect propagating blast waves causing increased loading at some locations and reduced loads elsewhere due to shielding from direct blast waves. The complex interaction between structures, streets, alleys and geographical terrain can have a major impact on structural loads. Currently, the most common way to estimate airblast pressures resulting from above ground explosive detonations is to use fast running, approximate blast tools such as CONWEP. These simplified tools may not provide accurate guidance on airblast pressures in complex environments. The following paper illustrates the use of Computational Fluid Dynamics (CFD) calculations of complex building configurations to quantify the resulting blast environment. Comparisons with simplified methods are presented. An approach to using a database of CFD simulations, customized for a specific site, to provide a fast running blast assessment tool is described. This approach provides a convenient, fast running tool for designers and security planners to visualize and accurately quantify the hazard from any threat size and location within the area of interest.


Sign in / Sign up

Export Citation Format

Share Document