scholarly journals The spike initiation in neurons with low input resistance

Author(s):  
Leibold Christian
1987 ◽  
Vol 23 (4) ◽  
pp. 138 ◽  
Author(s):  
B. Wilson ◽  
I. Darwazeh
Keyword(s):  

2011 ◽  
Vol 105 (1) ◽  
pp. 249-278 ◽  
Author(s):  
J.F.M. van Brederode ◽  
A. J. Berger

In the companion paper we show that GAD67-GFP+ (GFP+) inhibitory neurons located in the Nucleus of Roller of the mouse brain stem can be classified into two main groups (tonic and phasic) based on their firing patterns in responses to injected depolarizing current steps. In this study we examined the responses of GFP+ cells to fluctuating sinusoidal (“chirp”) current stimuli. Membrane impedance profiles in response to chirp stimulation showed that nearly all phasic cells exhibited subthreshold resonance, whereas the majority of tonic GFP+ cells were nonresonant. In general, subthreshold resonance was associated with a relatively fast passive membrane time constant and low input resistance. In response to suprathreshold chirp current stimulation at a holding potential just below spike threshold the majority of tonic GFP+ cells fired multiple action potentials per cycle at low input frequencies (<5 Hz) and either stopped firing or were not entrained by the chirp at higher input frequencies (= tonic low-pass cells). A smaller group of phasic GFP+ cells did not fire at low input frequency but were able to phase-lock 1:1 at intermediate chirp frequencies (= band-pass cells). Spike timing reliability was tested with repeated chirp stimuli and our results show that phasic cells were able to reliably fire when they phase-locked 1:1 over a relatively broad range of input frequencies. Most tonic low-pass cells showed low reliability and poor phase-locking ability. Computer modeling suggested that these different firing resonance properties among GFP+ cells are due to differences in passive and active membrane properties and spiking mechanisms. This heterogeneity of resonance properties might serve to selectively activate subgroups of interneurons.


1976 ◽  
Vol 39 (3) ◽  
pp. 459-473 ◽  
Author(s):  
P. C. Magherini ◽  
W. Precht

Electrical properties of the spinal motoneurons of Rana temporaria and R. esculenta were investigated in the in situ spinal cord at 20-22 degrees C by means of intracellular recording and current injection. Input resistance values depended on the method of measurement in a given cell but were generally inversely related to axon conduction velocity. The membrane-potential response to a subthreshold current pulse was composed of at least two exponentials with mean time constants of 2.5 and 20 ms. The membrance potential reached by the peak of a spike depended on the mode of spike initiation and membrane potential. Preceding a suprathreshold depolarization by a hyperpolarizing pulse could delay and eliminate spike initiation, similar to effects reported in certain invertebrate neurons. Antidromic invasion frequently failed in motoneurons of normal resting potential. Antidromic spike components (m,IS, SD) were similar to those of cat motoneurons. The delayed depolarization and the long afterhyperpolarization following an antidromic spike had many properties in common with the analogous afterpotentials of cat motoneurons. The reversal potential of the short afterhyperpolarization occurring immediately after the spike varied with resting potential and could not be used to determine potassium equilibrium potential. Sustained rhythmic firing could be evoked by continuous synaptic drive or long pulses of injected current. The plot of firing rate versus current strength had a substantial linear region. Both steady firing and adaptation properties varied markedly with motoneuron input resistance.


1987 ◽  
Vol 57 (5) ◽  
pp. 1425-1445 ◽  
Author(s):  
D. H. Edwards ◽  
B. Mulloney

The passive integrative properties of two crayfish abdominal motoneurons, the fast flexor inhibitor (FI) and a posterior, ipsilateral fast flexor excitor (FE), were studied electrophysiologically and through simulations with multicompartment models of their electrotonic structures. Responses of the models to simulated giant neuron input were quite similar to the motoneurons' responses to giant neuron stimulation, which suggests that differences in the electrotonic structures and the sites of synaptic input to the two cells can account in large part for differences in their responses to a common input. A full action potential created in the initial axon compartment of the FI model produced attenuated potentials in the adjacent integrating segment compartment and contralateral soma compartment. These potentials are similar in amplitude and time course to attenuated antidromic action potentials recorded in the corresponding regions of the FI neuron. A location of the spike initiation zone of the FI at the initial axon segment is consistent with this result. The responses of FI to ipsi- and contralateral inputs are different. Shock of a single abdominal second root produced a larger, faster rising excitatory postsynaptic potential in the ipsilateral FI soma than in the contralateral soma. Second root shock also caused the contralateral FI to produce an action potential either alone or before the ipsilateral FI neuron. Responses of the FI model to ipsilateral and contralateral inputs differ in the same way as the cell's responses. Inputs to the FI model that are ipsilateral to the soma compartment produce larger responses there than do contralateral inputs. Conversely, those contralateral inputs produce larger responses in the initial axon compartment than do ipsilateral inputs. This difference results from the long integrating segment that connects the soma compartment to the initial axon compartment. These results can account for the FI responses to lateralized inputs. Unlike the responses of FIs, the soma responses of contralaterally homologous FEs to ipsilateral and contralateral second root shocks were similar in waveform and amplitude, with the ipsilateral root producing the larger response. This result is consistent with theoretical results from the FE model simulations. We conclude that a smaller size, larger input resistance and shorter membrane time constant allow the FE to respond to giant neuron input before the FI, and so help to achieve the proper timing of flexor contraction and relaxation during a tailflip.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document