scholarly journals Specific Immunotherapy in a Murine Model of Grass Pollen (Phl p5b)-Induced Airway Inflammation

2021 ◽  
Vol 2 ◽  
Author(s):  
Matthias Stiehm ◽  
Marcus Peters

Background: The use of ovalbumin as a model allergen in murine models of allergic asthma is controversially discussed since it is not an aeroallergen and sensitization can only be achieved by using strong Th2-inducing adjuvants. Therefore, in this study, a murine model of asthma has been established in which sensitization against the major grass pollen allergen Phl p5b was performed without using aluminum hydroxide (alum). We used this model for specific immunotherapy.Methods: Female, 5–6-week-old mice were sensitized by six subcutaneous (s.c.) injections of 20 μg Phl p5b followed by four provocations to induce allergic airway inflammation. For desensitization, 1 mg of Phl p5b was injected subcutaneously during allergen challenge for one to a maximum of four times. Three days after the last challenge, the allergic immune response was analyzed.Results: Sensitized and challenged animals showed a significant infiltration of eosinophils into the airways, and the production of interleukin-5 (IL-5) by in vitro re-stimulated splenocytes could be detected. Furthermore, hyper-responsiveness of the airways was verified by invasive measurement of airway resistance in methacholine-challenged animals. Desensitized animals showed a significant reduction of all parameters.Conclusion: In this study, a murine model of asthma has successfully been established by sensitization against the clinically relevant allergen Phl p5b without using alum. S.c. injection of allergen dose dependently led to desensitization of sensitized mice. We suggest that this model is useful to study adjuvant effects of immune modulatory substances on immunotherapy without the interference of alum.

Author(s):  
Anh Poirot ◽  
Guillaume Wacht ◽  
Lehalle Christine ◽  
Philippe Saas ◽  
Nelly Frossard ◽  
...  

Background: Resolution of inflammation is now recognized as a tightly regulated and active process. Lipoxins (LX) are lead members of a larger family of specialized pro-resolving mediators with unique anti-inflammatory and pro-resolving properties. Recent studies implicated natural killer (NK) cells in the resolution of allergic airway inflammation, notably in promoting eosinophil apoptosis. The aim of the study was to better understand the pro-resolving actions of NK cells and LXA4 during allergic eosinophilic airway inflammation. Methods: 20 subjects with grass pollen allergic rhinitis were included. A nasal provocation test with either a single grass pollen allergen threshold dose or diluent was used. Nasal lavage fluid and cells were collected at baseline and at different time points after challenge. For in vitro assays, eosinophils were incubated with NK cells. Results: We observed that NK cells were recruited to the nasal mucosa shortly after the initiation of the allergic inflammatory response. This recruitment correlated with eosinophilic inflammation. In vitro assays demonstrated that direct contact and a combined action of CD56bright and CD56dim NK cells were needed to promote autologous eosinophil apoptosis. We furthermore observed that local LXA4 production correlated with the peak of neutrophil nasal mucosal infiltration, suggesting a potential role of neutrophils in LXA4 biosynthesis during the early phase of the allergic inflammatory response. Last, LXA4 appeared as essential to inhibit the in vitro release of eosinophil superoxide triggered by NK cells. Conclusion: Together, these findings indicate a synergistic role for NK cells and LXA4 in the resolution of allergic eosinophilic inflammation.


Author(s):  
Hang Li ◽  
Jian Li ◽  
Tong Lu ◽  
Dehua Chen ◽  
Rui Xu ◽  
...  

2008 ◽  
Vol 8 (9) ◽  
pp. 1216-1221 ◽  
Author(s):  
J.F. Vasconcelos ◽  
M.M. Teixeira ◽  
J.M. Barbosa-Filho ◽  
A.S.S.C. Lúcio ◽  
J.R.G.S. Almeida ◽  
...  

Life Sciences ◽  
2008 ◽  
Vol 82 (13-14) ◽  
pp. 797-805 ◽  
Author(s):  
Won-Kyo Jung ◽  
Da-Young Lee ◽  
Yung Hyun Choi ◽  
Sung Su Yea ◽  
Inhak Choi ◽  
...  

2009 ◽  
Vol 609 (1-3) ◽  
pp. 126-131 ◽  
Author(s):  
Juliana F. Vasconcelos ◽  
Mauro M. Teixeira ◽  
José M. Barbosa-Filho ◽  
Maria F. Agra ◽  
Xirley P. Nunes ◽  
...  

2009 ◽  
Vol 107 (1) ◽  
pp. 295-301 ◽  
Author(s):  
Tanveer Ahmad ◽  
Ulaganathan Mabalirajan ◽  
Duraisamy Arul Joseph ◽  
Lokesh Makhija ◽  
Vijay Pal Singh ◽  
...  

Allergic airway inflammation (AI) is commonly associated with enhanced exhaled nitric oxide (ENO) in both humans and mice. Since mouse models are being used to understand various mechanisms of asthma, a noninvasive, simple, and reproducible method to determine ENO in mice is required for serial nonterminal assessment that can be used independent of environmental situations in which the ambient air contains substantial amounts of NO as a contaminant. The aim of this study was to noninvasively measure ENO in individual mice and to test its utility as a marker of AI in different models of allergic AI. We modified the existing ENO measuring methods by incorporating flushing and washout steps that allowed simple but reliable measurements under highly variable ambient NO conditions (1–100 ppb). This method was used to serially follow ENO in acute and chronic models of allergic AI in mice. ENO was reproducibly measured by this modified method and was positively correlated to AI in both acute and chronic models of asthma but was not independently related to airway remodeling. Resolution of AI and other related parameters in dexamethasone-treated mice resulted in reduction of ENO, further confirming this association. Restriction of allergen challenge to pulmonary but not nasal airways was associated with a smaller increase in ENO compared with allergen challenge to both. Hence, ENO can now be reliably measured in mice independent of ambient NO levels and is a valid biomarker for AI. However, nasal and pulmonary airways are likely to be independent sources of ENO, and any results must be interpreted as such.


Sign in / Sign up

Export Citation Format

Share Document