scholarly journals Experimental and Computational Comparison of Intervertebral Disc Bulge for Specimen-Specific Model Evaluation Based on Imaging

Author(s):  
Marlène Mengoni ◽  
Fernando Y. Zapata-Cornelio ◽  
Vithanage N. Wijayathunga ◽  
Ruth K. Wilcox

Finite element modelling of the spinal unit is a promising preclinical tool to assess the biomechanical outcome of emerging interventions. Currently, most models are calibrated and validated against range of motion and rarely directly against soft-tissue deformation. The aim of this contribution was to develop an in vitro methodology to measure disc bulge and assess the ability of different specimen-specific modelling approaches to predict disc bulge. Bovine bone-disc-bone sections (N = 6) were prepared with 40 glass markers on the intervertebral disc surface. These were initially magnetic resonance (MR)-imaged and then sequentially imaged using peripheral-qCT under axial compression of 1 mm increments. Specimen-specific finite-element models were developed from the CT data, using three different methods to represent the nucleus pulposus geometry with and without complementary use of the MR images. Both calibrated specimen-specific and averaged compressive material properties for the disc tissues were investigated. A successful methodology was developed to quantify the disc bulge in vitro, enabling observation of surface displacement on qCT. From the finite element model results, no clear advantage was found in using geometrical information from the MR images in terms of the models’ ability to predict stiffness or disc bulge for bovine intervertebral disc.

Author(s):  
Yu Hui ◽  
Kai-Rui Zhao ◽  
Jun-Sheng Wu ◽  
Bin Yu ◽  
Chen Zhang ◽  
...  

Recent research has shown that lumbar disease has become common in China. Since the structure of the lumbar spine is extremely complex, a finite element analysis method was used to perform biomechanical simulation and analysis of stress and strain on the L3–L4 lumbar segment to provide both a scientific and theoretical basis for clinical diagnosis and medical research. The MC volume-rendering 3D reconstruction method was the first step to accurately constructing the finite element model of the L3–L4 lumbar sacral segment, which was simulated prior to the addition of the ligaments, fibrous ring, and other major spinal tissue. The finite element model network was classified and the material properties of the corresponding parts were described. According to the normal model, careful simulation and deformation were performed, in addition to intervertebral disc degeneration in various cases. We have provided a detailed and professional analysis of the biomechanical properties, providing a powerful biomechanical basis for the diagnosis of intervertebral disc bulge and degeneration.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Oyvind Malde ◽  
Connor Cross ◽  
Chien L. Lim ◽  
Arsalan Marghoub ◽  
Michael L. Cunningham ◽  
...  

AbstractEarly fusion of the sagittal suture is a clinical condition called, sagittal craniosynostosis. Calvarial reconstruction is the most common treatment option for this condition with a range of techniques being developed by different groups. Computer simulations have a huge potential to predict the calvarial growth and optimise the management of this condition. However, these models need to be validated. The aim of this study was to develop a validated patient-specific finite element model of a sagittal craniosynostosis. Here, the finite element method was used to predict the calvarial morphology of a patient based on its preoperative morphology and the planned surgical techniques. A series of sensitivity tests and hypothetical models were carried out and developed to understand the effect of various input parameters on the result. Sensitivity tests highlighted that the models are sensitive to the choice of input parameter. The hypothetical models highlighted the potential of the approach in testing different reconstruction techniques. The patient-specific model highlighted that a comparable pattern of calvarial morphology to the follow up CT data could be obtained. This study forms the foundation for further studies to use the approach described here to optimise the management of sagittal craniosynostosis.


Author(s):  
Hai Yao ◽  
Wei Yong Gu

A 3D finite element model for charged hydrated soft tissue containing charged/uncharged solutes was developed based on the multi-phasic mechano-electrochemical mixture theory [1–2]. This model was applied to analyze the mechanical, chemical and electrical signals within the human intervertebral disc under mechanical loading. The effects of tissue composition and material property on the physical signals and the transport of fluid, ions and nutrients were investigated. This study is important for understanding disc biomechanics, disc nutrition and disc mechanobiology.


2016 ◽  
Vol 34 (7) ◽  
pp. 1264-1273 ◽  
Author(s):  
Brent L. Showalter ◽  
John F. DeLucca ◽  
John M. Peloquin ◽  
Daniel H. Cortes ◽  
Jonathon H. Yoder ◽  
...  

2015 ◽  
Vol 76 (10) ◽  
Author(s):  
Nor Fazli Adull Manan ◽  
Jamaluddin Mahmud ◽  
Aidah Jumahat

This paper for the first time attempts to establish the biomechanical characteristics of bovine skin via experiment-theory integration and finite element simulation. 30 specimens prepared from fresh slaughtered bovine were uniaxially stretched in-vitro using tensile tests machine. The experimental raw data are then input into a Matlab programme, which quantified the hyperelastic parameters based on Ogden constitutive equation. It is found that the Ogden coefficient and exponent for bovine skin are μ = 0.017 MPa and α = 11.049 respectively. For comparison of results, the quantified Ogden parameters are then input into a simple but robust finite element model, which is developed to replicate the experimental setup and simulate the deformation of the bovine skin. Results from experiment-theory integration and finite element simulation are compared. It is found that the stress-stretch curves are close to one another. The results and finding prove that the current study is significant and has contributed to knowledge enhancement about the deformation behaviour of bovine skin.


2010 ◽  
Vol 22 (2) ◽  
pp. 73-80 ◽  
Author(s):  
M. Cuchanski ◽  
D. Cook ◽  
M. Jegapragasan ◽  
D. M. Whiting ◽  
Boyle C. Cheng

Sign in / Sign up

Export Citation Format

Share Document