scholarly journals Numerical Assessment of URM Infilled RC Frames Retrofitted With Near-Surface Mounted Reinforcing Steel Bars

2020 ◽  
Vol 6 ◽  
Author(s):  
Rajendra Soti ◽  
Andre R. Barbosa ◽  
Andreas Stavridis

This paper presents a study on a retrofit technique for masonry infilled reinforced concrete (RC) frames. The proposed retrofit technique involves the addition of reinforcing steel bars into epoxy-filled pre-cut grooves on the surface of infill walls. The feasibility of the developed technique is initially investigated experimentally through pull-out tests conducted on near-surface mounted (NSM) reinforcing steel bars. The experimental results are used to augment an existing nonlinear finite element modeling approach used to simulate the response of RC frames with the retrofitted infill panels and to calibrate the numerical models developed. The nonlinear finite element models employ smeared-crack and zero-thickness cohesive-crack interface elements to model the RC members and masonry infills, while nonlinear truss elements are used to model the reinforcing steel bars. The modeling scheme is used to numerically simulate the performance of one- and two-bay infilled RC frames with a variety of reinforcing steel retrofit configurations under lateral loads. The results indicate that the retrofit solution can improve the deformation capacity of existing infilled frames, and its effectiveness depends on the orientation and the distribution of the NSM reinforcement steel bars that are added to the infill panels.

2016 ◽  
Vol 33 (4) ◽  
pp. 1114-1140 ◽  
Author(s):  
Khalid Abou El-Ftooh ◽  
Ahmed Atta ◽  
Ayman Ahmed Seleemah ◽  
Salah El-Din Fahmy Taher

Purpose – Separately, nonlinear finite element analysis, artificial neural networks (ANNs) and continuous damage mechanics (CDM) attracted many investigators to model masonry infilled frames. The purpose of this paper is to pursue four phases to develop a versatile model for partially and fully low-rise infilled RC frames using these tools. Design/methodology/approach – The first phase included the study of the behavior of 1,620 low-rise infilled reinforced concrete frames using macro-scale nonlinear pushover finite element analysis. The approach helped to explore the effects of imposing different masonry infill distributions for one of the typical models of school buildings in Egypt. The outputs of this phase were used in the second phase for the development of an ANN model where input neurons included number of stories, continuity conditions, frame geometry, infill distribution and properties of RC sections. The third phase included the employment of the notions of CDM on the structural scale. Monitoring frames’ stiffness degradation allowed for damage variables identification. In the fourth phase, the simpler equivalent static lateral load (ESLL) for elastic analysis was employed in conjunction with ANN and CDM to obtain the capacity curves for partially and fully low-rise infilled RC frames. Findings – The obtained capacity curves were compared with the nonlinear finite element results. The close agreement of all curves indicated how rigorous, yet simple, the suggested solution procedure is. Social implications – The study is concerned with an important type of service buildings. These are the school buildings of Egypt. Originality/value – The paper presents a combination of four phases that include FE analysis, ANNs, ESLL, and CDM to obtain the capacity curves for partially and fully low-rise infilled RC frames. Such a combination of approaches in tackling a practical problem related to service buildings is innovative and deserves research interest.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Md. Akter Hosen ◽  
Mohd Zamin Jumaat ◽  
A. B. M. Saiful Islam

Nowadays, the use of near surface mounted (NSM) technique strengthening reinforced concrete (RC) structural members is going very popular. The failure modes of NSM strengthened reinforced concrete (RC) beams have been shown to be largely due to premature failure such as concrete cover separation. In this study, CFRP U-wrap end anchorage with CFRP fabrics was used to eliminate the concrete cover separation failure. A total of eight RC rectangular beam specimens of 125 mm width, 250 mm depth, and 2300 mm length were tested. One specimen was kept unstrengthened as a reference; three specimens were strengthened with NSM steel bars and the remaining four specimens were strengthened with NSM steel bars together with the U-wrap end anchorage. The experimental results showed that wrapped strengthened beams had higher flexural strength and superior ductility performance. The results also show that these beams had less deflection, strain, crack width, and spacing.


Sign in / Sign up

Export Citation Format

Share Document