scholarly journals A TRIZ Approach to Reliable Megaproject Sustainability

2021 ◽  
Vol 7 ◽  
Author(s):  
Zhen Chen ◽  
Andrew Agapiou ◽  
Heng Li ◽  
Qian Xu

Purposes: This article presents a recent research into megaproject sustainability with a particular focus on identifying a structure of its body of knowledge so as to establish the methodology of megaproject assessment on sustainability (MAS), which consists of a research roadmap toward megaproject sustainability and a system reliability analysis. In response to the research topic on “Reviews for Advanced Construction Management” at Frontiers in Built Environment, this article aims to make a contribution with the description about a generic approach to conducting literature review based on a whole range of relevant evidence in a systemic way.Methodology: The research described in this article is underpinned by the use of several methods. The nine-square process (NSP) of Theory of Inventive Problem Solving (TRIZ) is the method for facilitating a systemic evidence-based learning (EBL) process to identify further research into MAS. A normal process to establish research roadmap was then introduced to summarize what has been identified as specific research tasks alongside lifecycle processes on megaproject delivery, to which RIBA Plan of Work 2020 was adopted as the prototype. An event tree analysis (ETA) was eventually introduced by incorporating the novel measurements on system reliability to support quantitative MAS in terms of both practices and research.Findings: This article presents several findings from the described research, and these include that the use of NSP led to the formation of a systematic procedure for literature review, a procedure to support MAS, a research roadmap to facilitate efforts to be made for megaproject sustainability, and the feasibility of system reliability analysis to measure the status of sustainability underpinned by research and practices throughout megaproject lifecycle.Implications: The described research provides four modules to foster further research into megaproject sustainability, and these include a TRIZ-based module to facilitate systemic literature review for EBL, a lifecycle process module for MAS, a prototype research roadmap to guide research and development for megaproject sustainability, and an ETA module to support a system reliability analysis in the dynamic process of research and practices toward megaproject sustainability.Value: The research described in this article has made an initial effort to conduct a strategic review, development, analysis, and discussion about tactics for research and development toward megaproject sustainability. Research findings can be used for related research and practices with regard to technical guidance and best practices in megaproject delivery.

2020 ◽  
Vol 11 (1) ◽  
pp. 134
Author(s):  
Darja Gabriska

In an automated systems environment is very important to predicted failures or unexpected situations to achieve system reliability. Failure of such systems can cause serious property damage, the environment, damage to human health or cause death. The essential task is to determine the tolerable and acceptable risk. The required level of risk for safety-critical systems can be achieved by using international technical standards and applying safety functions. Safety functions are implemented using an electrical/electronic/programmable electronics (E/E/PE) safety-related system. Technical standards offer the aspect of balancing risk tolerability according to the relevant, reliable safety functions. Based on the specific architecture of the whole system, it is possible to determine the maximum failure rate of the probability of failure on demand (PFDSYS) of the selected architecture. Subsequent application of reliability analysis using the event tree analysis (ETA) and fault tree analysis (FTA) methods can optimize the failure rate of the entire system. Application of reliability analysis using event tree analysis (ETA) and fault tree analysis (FTA) methods can only theoretically optimize the failure rate of the entire system with constant initial conditions and constant parameters of the reliability functions. The article proposes a new methodology for dynamic analysis of the state of system reliability as a function of the system operation time, maintenance frequency and system architecture. As a result of the methodology is a library of standard element architectures and simulation models which allows predicting and optimizing the reliability of E/E/PE safety-related systems.


2018 ◽  
Vol 5 (2) ◽  
pp. 139
Author(s):  
Salman Al Farisi ◽  
Rukmi Sari Hartati ◽  
I Wayan Sukerayasa

The need for electricity in this global era is increasing, so that a more reliable electrical system is needed. A reliable system cannot be separated from interference, so there needs to be a system reliability analysis and power loss to the feeder by configuring the network. This research was conducted to find the reliability index value in the form of interference frequency and duration of interference (SAIFI and SAIDI). In one Tabanan feeder the results obtained exceed the standard so reconfiguration is performed Based on the analysis obtained before reconfiguration, the reliability index for SAIFI is 6,7456 (failure / year) and SAIDI is 11,4767 (hour / year) and power loss by 6,27 %. After reconfiguration of Tabanan feeder, the reliability index was better, for SAIFI is 5.2475 (disturbance / year) and SAIDI is 9,8798 (hour / year), the power loss was 2.82%. Sanggulan feeder is a new feeder reconfiguration result from Tabanan feeder, where the analysis was carried out to find out the reliability index of Sanggulan feeder, it was obtained the SAIFI value of 4.5753 (disturbance / year) and SAIDI of 9.5297 (hour / year) and power loss of 4,80%.


Sign in / Sign up

Export Citation Format

Share Document