scholarly journals Strong as a Hippo’s Heart: Biomechanical Hippo Signaling During Zebrafish Cardiac Development

Author(s):  
Dorothee Bornhorst ◽  
Salim Abdelilah-Seyfried

The heart is comprised of multiple tissues that contribute to its physiological functions. During development, the growth of myocardium and endocardium is coupled and morphogenetic processes within these separate tissue layers are integrated. Here, we discuss the roles of mechanosensitive Hippo signaling in growth and morphogenesis of the zebrafish heart. Hippo signaling is involved in defining numbers of cardiac progenitor cells derived from the secondary heart field, in restricting the growth of the epicardium, and in guiding trabeculation and outflow tract formation. Recent work also shows that myocardial chamber dimensions serve as a blueprint for Hippo signaling-dependent growth of the endocardium. Evidently, Hippo pathway components act at the crossroads of various signaling pathways involved in embryonic zebrafish heart development. Elucidating how biomechanical Hippo signaling guides heart morphogenesis has direct implications for our understanding of cardiac physiology and pathophysiology.

2021 ◽  
Author(s):  
Christopher J. Derrick ◽  
Eric J. G. Pollitt ◽  
Ashley Sanchez Sevilla Uruchurtu ◽  
Farah Hussein ◽  
Emily S. Noёl

AbstractDuring early vertebrate heart development, the heart transitions from a linear tube to a complex asymmetric structure. This process includes looping of the tube and ballooning of the emerging cardiac chambers, which occur simultaneously with growth of the heart. A key driver of cardiac growth is deployment of cells from the Second Heart Field (SHF) into both poles of the heart, with cardiac morphogenesis and growth intimately linked in heart development. Laminin is a core component of extracellular matrix (ECM) basement membranes, and although mutations in specific laminin subunits are linked with a variety of cardiac abnormalities, including congenital heart disease and dilated cardiomyopathy, no role for laminin has been identified in early vertebrate heart morphogenesis. We identified dynamic, tissue-specific expression of laminin subunit genes in the developing zebrafish heart, supporting a role for laminins in heart morphogenesis.lamb1amutants exhibit cardiomegaly from 2dpf onwards, with subsequent progressive defects in cardiac morphogenesis characterised by a failure of the chambers to compact around the developing atrioventricular canal. We show that loss oflamb1aresults in excess addition of SHF cells to the atrium, revealing that Lamb1a functions to limit heart size during cardiac development by restricting SHF addition to the venous pole.lamb1amutants exhibit hallmarks of altered haemodynamics, and specifically blocking cardiac contractility inlamb1amutants rescues heart size and atrial SHF addition. Furthermore, we identify that FGF and RA signalling, two conserved pathways promoting SHF addition, are regulated by heart contractility and are dysregulated inlamb1amutants, suggesting that laminin mediates interactions between SHF deployment, heart biomechanics, and biochemical signalling during heart development. Together, this describes the first requirement for laminins in early vertebrate heart morphogenesis, reinforcing the importance of specialised ECM composition in cardiac development.


Development ◽  
2021 ◽  
Author(s):  
Christopher J. Derrick ◽  
Eric J. G. Pollitt ◽  
Ashley Sanchez Sevilla Uruchurtu ◽  
Farah Hussein ◽  
Andrew J. Grierson ◽  
...  

During early vertebrate heart development the heart transitions from a linear tube to a complex asymmetric structure, a morphogenetic process which occurs simultaneously with growth of the heart. Cardiac growth during early heart morphogenesis is driven by deployment of cells from the Second Heart Field (SHF) into both poles of the heart. Laminin is a core component of the extracellular matrix (ECM), and although mutations in laminin subunits are linked with cardiac abnormalities, no role for laminin has been identified in early vertebrate heart morphogenesis. We identified tissue-specific expression of laminin genes in the developing zebrafish heart, supporting a role for laminins in heart morphogenesis. Analysis of heart development in lamb1a zebrafish mutant embryos reveals mild morphogenetic defects and progressive cardiomegaly, and that Lamb1a functions to limit heart size during cardiac development by restricting SHF addition. lamb1a mutants exhibit hallmarks of altered haemodynamics, and blocking cardiac contractility in lamb1a mutants rescues heart size and atrial SHF addition. Together this suggests that laminin mediates interactions between SHF deployment and cardiac biomechanics during heart development and growth in the developing embryo.


2019 ◽  
Vol 20 (11) ◽  
pp. 2742 ◽  
Author(s):  
Victor Camberos ◽  
Jonathan Baio ◽  
Leonard Bailey ◽  
Nahidh Hasaniya ◽  
Larry V. Lopez ◽  
...  

Spaceflight alters many processes of the human body including cardiac function and cardiac progenitor cell behavior. The mechanism behind these changes remains largely unknown; however, simulated microgravity devices are making it easier for researchers to study the effects of microgravity. To study the changes that take place in cardiac progenitor cells in microgravity environments, adult cardiac progenitor cells were cultured aboard the International Space Station (ISS) as well as on a clinostat and examined for changes in Hippo signaling, a pathway known to regulate cardiac development. Cells cultured under microgravity conditions, spaceflight-induced or simulated, displayed upregulation of downstream genes involved in the Hippo pathway such as YAP1 and SOD2. YAP1 is known to play a role in cardiac regeneration which led us to investigate YAP1 expression in a sheep model of cardiovascular repair. Additionally, to mimic the effects of microgravity, drug treatment was used to induce Hippo related genes as well as a regulator of the Hippo pathway, miRNA-302a. These studies provide insight into the changes that occur in space and how the effects of these changes relate to cardiac regeneration studies.


Development ◽  
2011 ◽  
Vol 138 (11) ◽  
pp. 2389-2398 ◽  
Author(s):  
D. Hami ◽  
A. C. Grimes ◽  
H.-J. Tsai ◽  
M. L. Kirby

2009 ◽  
Vol 336 (2) ◽  
pp. 137-144 ◽  
Author(s):  
Laura A. Dyer ◽  
Margaret L. Kirby

Author(s):  
Bill Chaudhry ◽  
José Luis de la Pompa ◽  
Nadia Mercader

The zebrafish has become an established laboratory model for developmental studies and is increasingly used to model aspects of human development and disease. However, reviewers and grant funding bodies continue to speculate on the utility of this Himalayan minnow. In this chapter we explain the similarities and differences between the heart from this distantly related vertebrate and the mammalian heart, in order to reveal the common fundamental processes and to prevent misleading extrapolations. We provide an overview of zebrafish including their husbandry, development, peculiarities of their genome, and technological advances, which make them a highly tractable laboratory model for heart development and disease. We discuss the controversies around morphants and mutants, and relate the development and structures of the zebrafish heart to mammalian counterparts. Finally, we give an overview of regeneration in the zebrafish heart and speculate on the role of the model organism in next-generation sequencing technologies.


Development ◽  
2001 ◽  
Vol 128 (16) ◽  
pp. 3179-3188 ◽  
Author(s):  
Karen L. Waldo ◽  
Donna H. Kumiski ◽  
Kathleen T. Wallis ◽  
Harriett A. Stadt ◽  
Mary. R. Hutson ◽  
...  

The primary heart tube is an endocardial tube, ensheathed by myocardial cells, that develops from bilateral primary heart fields located in the lateral plate mesoderm. Earlier mapping studies of the heart fields performed in whole embryo cultures indicate that all of the myocardium of the developed heart originates from the primary heart fields. In contrast, marking experiments in ovo suggest that the atrioventricular canal, atria and conotruncus are added secondarily to the straight heart tube during looping. The results we present resolve this issue by showing that the heart tube elongates during looping, concomitant with accretion of new myocardium. The atria are added progressively from the caudal primary heart fields bilaterally, while the myocardium of the conotruncus is elongated from a midline secondary heart field of splanchnic mesoderm beneath the floor of the foregut. Cells in the secondary heart field express Nkx2.5 and Gata-4, as do the cells of the primary heart fields. Induction of myocardium appears to be unnecessary at the inflow pole, while it occurs at the outflow pole of the heart. Accretion of myocardium at the junction of the inflow myocardium with dorsal mesocardium is completed at stage 12 and later (stage 18) from the secondary heart field just caudal to the outflow tract. Induction of myocardium appears to move in a caudal direction as the outflow tract translocates caudally relative to the pharyngeal arches. As the cells in the secondary heart field begin to move into the outflow or inflow myocardium,they express HNK-1 initially and then MF-20, a marker for myosin heavy chain. FGF-8 and BMP-2 are present in the ventral pharynx and secondary heart field/outflow myocardium, respectively, and appear to effect induction of the cells in a manner that mimics induction of the primary myocardium from the primary heart fields. Neither FGF-8 nor BMP-2 is present as inflow myocardium is added from the primary heart fields. The addition of a secondary myocardium to the primary heart tube provides a new framework for understanding several null mutations in mice that cause defective heart development.


2015 ◽  
Vol 112 (4) ◽  
pp. 1065-1070 ◽  
Author(s):  
Xianjue Ma ◽  
Yujun Chen ◽  
Wenyan Xu ◽  
Nana Wu ◽  
Maoquan Li ◽  
...  

The Hippo and c-Jun N-terminal kinase (JNK) pathway both regulate growth and contribute to tumorigenesis when dysregulated. Whereas the Hippo pathway acts via the transcription coactivator Yki/YAP to regulate target gene expression, JNK signaling, triggered by various modulators including Rho GTPases, activates the transcription factors Jun and Fos. Here, we show that impaired Hippo signaling induces JNK activation through Rho1. Blocking Rho1–JNK signaling suppresses Yki-induced overgrowth in the wing disk, whereas ectopic Rho1 expression promotes tissue growth when apoptosis is prohibited. Furthermore, Yki directly regulates Rho1 transcription via the transcription factor Sd. Thus, our results have identified a novel molecular link between the Hippo and JNK pathways and implicated the essential role of the JNK pathway in Hippo signaling-related tumorigenesis.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Shaohai Fang ◽  
Jia Li ◽  
Jeff D Steimle ◽  
Lei Guo ◽  
Yuhan Yang ◽  
...  

DNA methylation and demethylation play an important role in shaping the epigenetic landscape and chromatin accessibility to control gene expression during development in mammals. Ten-eleven Translocation (Tet1, Tet2 and Tet3) is a family of dioxygenases that catalyze DNA methylation oxidation with ultimate DNA demethylation. Our previous study showed that cardiac-specific deletion of Tet2 and Tet3 could disrupt YY1-mediated long range chromatin interactions during heart development and lead to ventricular non-compaction cardiomyopathy. However, it is still unclear whether and how Tet protein mediated epigenetic modifications contribute to cardiac lineage specification during embryonic development. In this study, we generated cardiac specific Tet1-3 triple deficient (Tet-TKO) mouse lines using various cardiac specific Cres to evaluate the function of Tet protein in regulating cardiac lineage specification. We observed developmental defects at outflow tract (OFT) in Tet-TKO embryos, suggesting that Tet deficiency affects the second heart field (SHF) development. Single cell RNA-seq analysis further revealed the accumulation of multipotent SHF progenitors and subsequent halt of myocyte differentiation upon Tet depletion. At the molecular level, we found that Tet ablation perturbs the transcriptional network of Islet1, a transcription factor that is crucial for cardiac development in embryos. Overall, our study demonstrates a critical role of Tet-mediated epigenetic regulation for embryonic cardiac development.


Sign in / Sign up

Export Citation Format

Share Document