scholarly journals 5-Hydroxymethylfurfural Alleviates Inflammatory Lung Injury by Inhibiting Endoplasmic Reticulum Stress and NLRP3 Inflammasome Activation

Author(s):  
Hang Zhang ◽  
Zheyi Jiang ◽  
Chuanbin Shen ◽  
Han Zou ◽  
Zhiping Zhang ◽  
...  

5-Hydroxymethylfurfural (5-HMF) is a common reaction product during heat processing and the preparation of many types of foods and Traditional Chinese Medicine formulations. The aim of this study was to evaluate the protective effect of 5-HMF on endotoxin-induced acute lung injury (ALI) and the underlying mechanisms. Our findings indicate that 5-HMF attenuated lipopolysaccharide (LPS)-induced ALI in mice by mitigating alveolar destruction, neutrophil infiltration and the release of inflammatory cytokines. Furthermore, the activation of macrophages and human monocytes in response to LPS was remarkably suppressed by 5-HMF in vitro through inhibiting the NF-κB signaling pathway, NLRP3 inflammasome activation and endoplasmic reticulum (ER) stress. The inhibitory effect of 5-HMF on NLRP3 inflammasome was reversed by overexpressing ATF4 or CHOP, indicating the involvement of ER stress in the negative regulation of 5-HMF on NLRP3 inflammasome-mediated inflammation. Consistent with this, the ameliorative effect of 5-HMF on in vivo pulmonary dysfunction were reversed by the ER stress inducer tunicamycin. In conclusion, our findings elucidate the anti-inflammatory and protective efficacy of 5-HMF in LPS-induced acute lung injury, and also demonstrate the key mechanism of its action against NLRP3 inflammasome-related inflammatory disorders via the inhibition of ER stress.

2021 ◽  
Author(s):  
Haijin Lv ◽  
Xiaofeng Yuan ◽  
Jiebin Zhang ◽  
Tongyu Lu ◽  
Jia Yao ◽  
...  

Abstract Objectives: Acute lung injury (ALI) remains one of the common causes of morbidity and mortality worldwide, so far, without any effective therapeutic approach. Previous researches have revealed that topical administration of umbilical cord-derived mesenchymal stem cells (UC-MSCs) can attenuate pathological changes in experimental acute lung injury. Heat shock (HS) pretreatment has been identified as a method to enhance survival and function of cells. The present study aimed to assess whether HS-pretreated mesenchymal stem cells (MSCs) could strengthen the immunomodulation and recovery from ALI. Materials and Methods: HS pretreatment was defined 42℃ for 1h, the changes of biological characteristics and the secreted functions were detected. In the mouse model of ALI, we intranasally dripped the pretreated UC-MSCs in vivo, confirmed their therapeutic effects and detected the phenotypes of macrophages in bronchoalveolar lavage fluid (BALF). To elucidate their mechanisms, we co-cultured the pretreated UC-MSCs with macrophages in vitro, and the expression levels of inflammasome-related proteins in macrophages were assessed. Finally, Apoptozole was used for further determine the role of HSP70 in HS-pretreated UC-MSCs-based therapy. Results: The data showed that UC-MSCs did not represented significant changes in viability and biological characterizations after received HS pretreatment. Administration of HS-pretreated UC-MSCs into the ALI model, improved pathological changes and lung damage-related indexes, reduced of the levels of pro-inflammatory cytokines and modulated the balance of M1/M2. Mechanistically, both in vivo and in vitro studies demonstrated that HS pretreatment enhanced the protein level of HSP70 in UC-MSCs and subsequently upregulated the synthesis and secretion of PGE2, which negatively modulated the NLRP3 inflammasome activation of alveolar macrophages. And these effects was partially reversed by Apoptozole. Conclusion: HS pretreatment can strengthen the beneficial effects of UC-MSCs on inhibiting NLRP3 inflammasome activation of macrophages in ALI. The mechanism may be contributed to the upregulated expression of HSP70 to further induce PGE2 synthesis and secretion.


2021 ◽  
Vol 12 ◽  
Author(s):  
Liu Ye ◽  
Qi Zeng ◽  
Maoyao Ling ◽  
Riliang Ma ◽  
Haishao Chen ◽  
...  

RationaleDisruption of intracellular calcium (Ca2+) homeostasis is implicated in inflammatory responses. Here we investigated endoplasmic reticulum (ER) Ca2+ efflux through the Inositol 1,4,5-trisphosphate receptor (IP3R) as a potential mechanism of inflammatory pathophysiology in a ventilator-induced lung injury (VILI) mouse model.MethodsC57BL/6 mice were exposed to mechanical ventilation using high tidal volume (HTV). Mice were pretreated with the IP3R agonist carbachol, IP3R inhibitor 2-aminoethoxydiphenyl borate (2-APB) or the Ca2+ chelator BAPTA-AM. Lung tissues and bronchoalveolar lavage fluid (BALF) were collected to measure Ca2+ concentrations, inflammatory responses and mRNA/protein expression associated with ER stress, NLRP3 inflammasome activation and inflammation. Analyses were conducted in concert with cultured murine lung cell lines.ResultsLungs from mice subjected to HTV displayed upregulated IP3R expression in ER and mitochondrial-associated-membranes (MAMs), with enhanced formation of MAMs. Moreover, HTV disrupted Ca2+ homeostasis, with increased flux from the ER to the cytoplasm and mitochondria. Administration of carbachol aggravated HTV-induced lung injury and inflammation while pretreatment with 2-APB or BAPTA-AM largely prevented these effects. HTV activated the IRE1α and PERK arms of the ER stress signaling response and induced mitochondrial dysfunction-NLRP3 inflammasome activation in an IP3R-dependent manner. Similarly, disruption of IP3R/Ca2+ in MLE12 and RAW264.7 cells using carbachol lead to inflammatory responses, and stimulated ER stress and mitochondrial dysfunction.ConclusionIncrease in IP3R-mediated Ca2+ release is involved in the inflammatory pathophysiology of VILI via ER stress and mitochondrial dysfunction. Antagonizing IP3R/Ca2+ and/or maintaining Ca2+ homeostasis in lung tissue represents a prospective treatment approach for VILI.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Haijin Lv ◽  
Xiaofeng Yuan ◽  
Jiebin Zhang ◽  
Tongyu Lu ◽  
Jia Yao ◽  
...  

Abstract Objectives Acute lung injury (ALI) remains a common cause of morbidity and mortality worldwide, and to date, there is no effective treatment for ALI. Previous studies have revealed that topical administration of mesenchymal stem cells (MSCs) can attenuate the pathological changes in experimental acute lung injury. Heat shock (HS) pretreatment has been identified as a method to enhance the survival and function of cells. The present study aimed to assess whether HS-pretreated MSCs could enhance immunomodulation and recovery from ALI. Materials and methods HS pretreatment was performed at 42 °C for 1 h, and changes in biological characteristics and secretion functions were detected. In an in vivo mouse model of ALI, we intranasally administered pretreated umbilical cord-derived MSCs (UC-MSCs), confirmed their therapeutic effects, and detected the phenotypes of the macrophages in bronchoalveolar lavage fluid (BALF). To elucidate the underlying mechanisms, we cocultured pretreated UC-MSCs with macrophages in vitro, and the expression levels of inflammasome-related proteins in the macrophages were assessed. Results The data showed that UC-MSCs did not exhibit significant changes in viability or biological characteristics after HS pretreatment. The administration of HS-pretreated UC-MSCs to the ALI model improved the pathological changes and lung damage-related indexes, reduced the proinflammatory cytokine levels, and modulated the M1/M2 macrophage balance. Mechanistically, both the in vivo and in vitro studies demonstrated that HS pretreatment enhanced the protein level of HSP70 in UC-MSCs, which negatively modulated NLR family pyrin domain containing 3 (NLRP3) inflammasome activation in alveolar macrophages. These effects were partially reversed by knocking down HSP70 expression. Conclusion HS pretreatment can enhance the beneficial effects of UC-MSCs in inhibiting NLRP3 inflammasome activation in macrophages during ALI. The mechanism may be related to the upregulated expression of HSP70. Graphical abstract


2021 ◽  
pp. 175342592110354
Author(s):  
Caixia Liu ◽  
Benlong Cai ◽  
Dan Li ◽  
Yuan Yao

Sepsis is a complex clinical syndrome with high incidence and mortality. Acute lung injury (ALI) is a common complication of sepsis. At present, there is no effective therapeutic strategy to treat ALI. The SET domain–containing histone methyltransferase Wolf–Hirschhorn syndrome candidate 1 (WHSC1) regulates cancer progression, while its role in sepsis-induced ALI remains unclear. Thus, this study aimed to study the effect of WHSC1 on sepsis-induced ALI and to explore the potential mechanism of action. In the study, LPS treatment induced lung injury. WHSC1 was highly expressed in LPS-induced ALI. Knockdown of WHSC1 attenuated LPS-induced ALI and pyroptosis in vivo. Besides, knockdown of WHSC1 attenuated LPS-induced alveolar macrophage pyroptosis in vitro. Furthermore, NIMA-related kinase-7 (NEK7) expression could be regulated by WHSC1, and NEK7 bound to NLRP3 in alveolar macrophages. Moreover, WHSC1 regulated alveolar macrophage pyroptosis through modulating NEK7-mediated NLRP3 inflammasome activation. In conclusion, WHSC1 was highly expressed in LPS-induced ALI. WHSC1 facilitated alveolar macrophage pyroptosis in sepsis-induced ALI through NEK7-mediated NLRP3 inflammasome activation. WHSC1 may be a valuable target for the therapy of sepsis-induced ALI.


2019 ◽  
Vol 11 (11) ◽  
pp. 4816-4828 ◽  
Author(s):  
Guannan Wu ◽  
Qingqing Zhu ◽  
Junli Zeng ◽  
Xiaoling Gu ◽  
Yingying Miao ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Renyikun Yuan ◽  
Jia He ◽  
Liting Huang ◽  
Li-Jun Du ◽  
Hongwei Gao ◽  
...  

Acute lung injury (ALI) is an acute inflammatory process in the lung parenchyma. Anemoside B4 (B4) was isolated from Pulsatilla, a plant-based drug against inflammation and commonly applied in traditional Chinese medicine. However, the anti-inflammatory effect and the mechanisms of B4 are not clear. In this study, we explored the potential mechanisms and anti-inflammatory activity of B4 both in vitro and in vivo. The results indicated that B4 suppressed the expression of iNOS, COX-2, NLRP3, caspase-1, and IL-1β. The ELISA assay results showed that B4 significantly restrained the release of inflammatory cytokines like TNF-α, IL-6, and IL-1β in macrophage cells. In addition, B4 rescued mitochondrial membrane potential (MMP) loss in (lipopolysaccharide) LPS plus ATP stimulated macrophage cells. Co-IP and molecular docking results illustrated that B4 disrupted the dimerization of TLR4. For in vivo results, B4 exhibited a protective effect on LPS and bleomycin- (BLM-) induced ALI in mice through suppressing the lesions of lung tissues, the release of inflammatory cytokines, and the levels of white blood cells, neutrophils, and lymphoid cells in the blood. Collectively, B4 has a protective effect on ALI via blocking TLR4 dimerization and NLRP3 inflammasome activation, suggesting that B4 is a potential agent for the treatment of ALI.


Sign in / Sign up

Export Citation Format

Share Document