scholarly journals Advanced oxidation of the commercial nonionic surfactant octylphenol polyethoxylate Triton™ X-45 by the persulfate/UV-C process: effect of operating parameters and kinetic evaluation

2013 ◽  
Vol 1 ◽  
Author(s):  
Idil Arslan-Alaton ◽  
Tugba Olmez-Hanci ◽  
Bora Genç ◽  
Duygu Dursun
2020 ◽  
Vol 42 ◽  
pp. e9
Author(s):  
Alex Leandro Andrade de Lucena ◽  
Daniella Carla Napoleão ◽  
Hélder Vinícius Carneiro da Silva ◽  
Rayany Magali da Rocha Santana ◽  
Beatriz Galdino Ribeiro ◽  
...  

The existence of pharmaceuticals in nature is a growing environmental problem, turning necessary the use of efficient treatments for the degradation of these substances, as the advanced oxidation processes (AOPs). In this work the AOPs UV/H2O2 and photo-Fenton were applied to degrade the pharmaceuticals lamivudine and zidovudine in an aqueous solution using a bench reactor, composed of three UV-C lamps. It was verified that the UV/H2O2 process presented a degradation of 97.33 ± 0.14% for lamivudine and 93.90 ± 0.33% for zidovudine, after 180 min of treatment and for an initial concentratin of each pharmaceutical of  5 mg.L-1 and [H2O2] of 600 mg.L-1.  A methodology by artificial neural networks (ANNs) was used to model the photocatalytic process, with the MLP 7-23-2 ANN representing it well, and determining the relative importance (%) of each of the input variables for the pharmaceutical’s degradation process. Kinetic studies for the pharmaceutical degradation and the conversion of organic matter showed good adjustments to the pseudo first-order models with R2 raging from 0.9705 to 0.9980. Toxicity assays for the before treatment solution indicated that the seeds Lactuca sativa and Portulaca grandiflora showed growth inhibition whereas the post-treatment solution inhibited only the growth of Lactuca sativa.


2018 ◽  
Vol 630 ◽  
pp. 1216-1225 ◽  
Author(s):  
J. Rodríguez-Chueca ◽  
E. Laski ◽  
C. García-Cañibano ◽  
M.J. Martín de Vidales ◽  
Á. Encinas ◽  
...  

2002 ◽  
Vol 46 (4-5) ◽  
pp. 51-58 ◽  
Author(s):  
N.H. Ince ◽  
D.A. Hasan ◽  
B. Üstün ◽  
G. Tezcanli

Treatability of textile dyebath effluents by two simultaneously operated processes comprising adsorption and advanced oxidation was investigated using a reactive dyestuff, Everzol Black-GSP® (EBG). The method was comprised of contacting aqueous solutions of the dye with hydrogen peroxide and granules of activated carbon (GAC) during irradiation of the reactor with ultraviolet light (UV). Control experiments were run separately with each individual process (advanced oxidation with UV/H2O2 and adsorption on GAC) to select the operating parameters on the basis of maximum color removal. The effectiveness of the combined scheme was tested by monitoring the rate of decolorization and the degree of carbon mineralization in effluent samples. It was found that in a combined medium of advanced oxidation and adsorption, color was principally removed by oxidative degradation, while adsorption contributed to the longer process of dye mineralization. Economic evaluation of the system based on total color removal and 50% mineralization showed that in the case of Everzol Black-GSP®, which adsorbs relatively poorly on GAC, the proposed combination provides 25% and 35% reduction in hydrogen peroxide and energy consumption relative to the UV/H2O2 system. Higher cost reductions are expected in cases with well adsorbing dyes and/or with less costly adsorbents.


2015 ◽  
Vol 31 (3) ◽  
Author(s):  
Archina Buthiyappan ◽  
Abdul Raman Abdul Aziz ◽  
Wan Mohd Ashri Wan Daud

AbstractAdvanced oxidation processes (AOPs) are commonly used for treating recalcitrant wastewater with varying degree of efficiency, depending on several operating parameters. In this review, a comparative study among selected AOPs integrated with ultraviolet (UV) (UV/Fenton, UV/H


2002 ◽  
Vol 36 (5) ◽  
pp. 1143-1154 ◽  
Author(s):  
Idil Arslan Alaton ◽  
Isil Akmehmet Balcioglu ◽  
Detlef W. Bahnemann
Keyword(s):  

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248487
Author(s):  
Mahdiyeh Hasani ◽  
Tracey Campbell ◽  
Fan Wu ◽  
Keith Warriner

A gas-phase Advanced Oxidation Process (gAOP) was evaluated for decontaminating N95 and surgical masks. The continuous process was based on the generation of hydroxyl-radicals via the UV-C (254 nm) photo-degradation of hydrogen peroxide and ozone. The decontamination efficacy of the gAOP was dependent on the orientation of the N95 mask passing through the gAOP unit with those positioned horizontally enabling greater exposure to hydroxyl-radicals compared to when arranged vertically. The lethality of gAOP was independent of the applied hydrogen peroxide concentration (2–6% v/v) but was significantly (P<0.05) higher when H2O2 was introduced into the unit at 40 ml/min compared to 20 ml/min. A suitable treatment for N95 masks was identified as 3% v/v hydrogen peroxide delivered into the gAOP reactor at 40 ml/min with continuous introduction of ozone gas and a UV-C dose of 113 mJ/cm2 (30 s processing time). The treatment supported >6 log CFU decrease in Geobacillus stearothermophilus endospores, > 8 log reduction of human coronavirus 229E, and no detection of Escherichia coli K12 on the interior and exterior of masks. There was no negative effect on the N95 mask fitting or particulate efficacy after 20 passes through the gAOP system. No visual changes or hydrogen peroxide residues were detected (<1 ppm) in gAOP treated masks. The optimized gAOP treatment could also support >6 log CFU reduction of endospores inoculated on the interior or exterior of surgical masks. G. stearothermophilus Apex spore strips could be applied as a biological indicator to verify the performance of gAOP treatment. Also, a chemical indicator based on the oxidative polymerization of pyrrole was found suitable for reporting the generation of hydroxyl-radicals. In conclusion, gAOP is a verifiable treatment that can be applied to decontaminate N95 and surgical masks without any negative effects on functionality.


2019 ◽  
Vol 372 ◽  
pp. 94-102 ◽  
Author(s):  
J. Rodríguez-Chueca ◽  
C. García-Cañibano ◽  
R.-J. Lepistö ◽  
Á. Encinas ◽  
J. Pellinen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document