scholarly journals Degradation of the pharmaceuticals lamivudine and zidovudine using advanced oxidation processes

2020 ◽  
Vol 42 ◽  
pp. e9
Author(s):  
Alex Leandro Andrade de Lucena ◽  
Daniella Carla Napoleão ◽  
Hélder Vinícius Carneiro da Silva ◽  
Rayany Magali da Rocha Santana ◽  
Beatriz Galdino Ribeiro ◽  
...  

The existence of pharmaceuticals in nature is a growing environmental problem, turning necessary the use of efficient treatments for the degradation of these substances, as the advanced oxidation processes (AOPs). In this work the AOPs UV/H2O2 and photo-Fenton were applied to degrade the pharmaceuticals lamivudine and zidovudine in an aqueous solution using a bench reactor, composed of three UV-C lamps. It was verified that the UV/H2O2 process presented a degradation of 97.33 ± 0.14% for lamivudine and 93.90 ± 0.33% for zidovudine, after 180 min of treatment and for an initial concentratin of each pharmaceutical of  5 mg.L-1 and [H2O2] of 600 mg.L-1.  A methodology by artificial neural networks (ANNs) was used to model the photocatalytic process, with the MLP 7-23-2 ANN representing it well, and determining the relative importance (%) of each of the input variables for the pharmaceutical’s degradation process. Kinetic studies for the pharmaceutical degradation and the conversion of organic matter showed good adjustments to the pseudo first-order models with R2 raging from 0.9705 to 0.9980. Toxicity assays for the before treatment solution indicated that the seeds Lactuca sativa and Portulaca grandiflora showed growth inhibition whereas the post-treatment solution inhibited only the growth of Lactuca sativa.

2020 ◽  
Vol 42 ◽  
pp. e30
Author(s):  
Alex Leandro Andrade de Lucena ◽  
Daniella Carla Napoleão ◽  
Hélder Vinícius Carneiro da Silva ◽  
Rayany Magali Da Rocha Santana ◽  
Beatriz Galdino Ribeiro ◽  
...  

The existence of pharmaceuticals in nature is a growing environmental problem, turning necessary the use of efficient treatments for the degradation of these substances, as the advanced oxidation processes (AOPs). In this work the AOPs UV/H2O2 and photo-Fenton were applied to degrade the pharmaceuticals lamivudine and zidovudine in an aqueous solution using a bench reactor, composed of three UV-C lamps. It was verified that the UV/H2O2 process presented a degradation of 97.33 ± 0.14% for lamivudine and 93.90 ± 0.33% for zidovudine, after 180 min of treatment and for an initial concentratin of each pharmaceutical of  5 mg.L-1 and [H2O2] of 600 mg.L-1.  A methodology by artificial neural networks (ANNs) was used to model the photocatalytic process, with the MLP 7-23-2 ANN representing it well, and determining the relative importance (%) of each of the input variables for the pharmaceutical’s degradation process. Kinetic studies for the pharmaceutical degradation and the conversion of organic matter showed good adjustments to the pseudo first-order models with R2 raging from 0.9705 to 0.9980. Toxicity assays for the before treatment solution indicated that the seeds Lactuca sativa and Portulaca grandiflora showed growth inhibition whereas the post-treatment solution inhibited only the growth of Lactuca sativa.


Author(s):  
Alex Leandro Lucena ◽  
Rayany Magali da Rocha Santana ◽  
Marcos André Oliveira ◽  
Luciano Costa Almeida ◽  
Marta Maria Bezerra Duarte Duarte ◽  
...  

The presence of pharmaceutical contaminants in nature is an environmental problem generating increasing concerns. Due to this, it is necessary to evaluate treatments that are capable of degrading these contaminants, such as the advanced oxidation processes (AOP). In this work, the photoperoxidation and photo-Fenton AOP were applied to degrade a mixture of the drugs lamivudine and zidovudine, in aqueous medium and synthetic effluent (SE). To this end, a bench reactor (UV-C; UV-A and sunlight irradiations) was built. The AOP treatments efficiency was evaluated by ultraviolet/visible spectrophotometry. The tests involved the application of the irradiations individually and combined. The best operational conditions were [H2O2] of 600 mg.L-1 and [Fe] of 0.5 mg.L-1, for both matrices, with degradations of 90.53% and 89.32% for the photoperoxidation and photo-Fenton processes in aqueous media and 88.69% and 85.79% in SE. Kinetic studies showed a good fit for two pseudo-first order models with R2 > 0.93. Toxicity tests involving the application of lettuce, carrot, and tomato seeds showed an inhibition for the three seeds when submitted to solutions after treatment, for both matrices, this fact is corroborated by the HPLC analysis, in which the formation of small peaks was verified, suggestive of the formation of by-products. Thus, it can be affirmed that both photo-Fenton and photoperoxidation processes are efficient to degrade the drug mixture when applying UV-C radiation.


2011 ◽  
Vol 8 (2) ◽  
pp. 182 ◽  
Author(s):  
Alfred Y. C. Tong ◽  
Rhiannon Braund ◽  
Eng W. Tan ◽  
Louis A. Tremblay ◽  
Tristan Stringer ◽  
...  

Environmental contextOseltamivir (Tamiflu) is widely used to prevent and treat influenza but conventional wastewater processes involving sedimentation and biotic oxidation do not appear to significantly remove it from sewage, leading to its discharge into the environment. A range of advanced oxidation processes (AOPs) involving photolysis of aqueous solutions of oseltamivir with UV alone, UV/H2O2 and UV/H2O2/FeII is demonstrated to lead to photodegradation of oseltamivir to products with no ecotoxicity observed. These AOPs may therefore offer potentially environmentally friendly sewage water treatment options. AbstractAqueous solutions of the antiviral drug oseltamivir phosphate (OSP, Tamiflu, (3R,4R,5S)-ethyl 4-acetamido-5-amino-3-(pentan-3-yloxy)cyclohex-1-enecarboxylate) were degraded using advanced oxidation processes (AOPs) involving photodegradation with UV alone, UV/H2O2 and UV/H2O2/FeII (photo-Fenton reaction). The photodecay of the parent OSP in all three cases followed first-order kinetics with respective rate constants of 0.21, 1.56 and 1.75 min–1 at 20°C in pH 7 phosphate-buffered Milli-Q water. The rate of UV/H2O2 photolysis in the presence of 2-methylpropan-2-ol was significantly slower with an approximate first-order rate constant of 0.13 min–1 suggesting the involvement of •OH in the degradation process. NMR spectroscopy, mass spectrometry and high-performance liquid chromatography (HPLC) with UV diode array detection were used to identify the crude photoproduct as the hydroxylated OSP derivative (3S,4R,5S)-ethyl 4-acetamido-5-amino-2-hydroxy-3-(pentan-3-yloxy)cyclohexanecarboxylate that occurs by an unknown mechanism. OSP and this crude photoproduct demonstrated no effect on the survival of Quinquelaophonte sp. over 96 h.


2020 ◽  
Vol 42 ◽  
pp. e7
Author(s):  
Joanna Cysneiros Silva ◽  
Rayany Magali da Rocha Santana ◽  
Graziele Elisandra do Nascimento ◽  
Alex Leandro Andrade de Lucena ◽  
Ana Maria Ribeiro Bastos da Silva ◽  
...  

Studies and research have been developed around the world on environmental pollution. Among the most diverse types of pollutants, textile dyes have attracted attention in the Brazilian Northeast. These compounds, besides being persistent, resist to the conventional treatments applied in the wastewater treatment plants. Thus, the present study evaluated the degradation of the mixture of direct red 23, direct red 227 and direct orange 26 dyes by advanced oxidation processes (AOPs). It was observed that the homogeneous AOPs were more efficient, being able to degrade 100% of the chromophoric groups after the optimization of the variables [H2O2], [Fe] and pH. The reaction kinetics for the photo-Fenton process followed a pseudo-first order non-linear model, with rapid decay of the concentrations in the first 60 min. Aiming to have a methodology capable of predicting the degradation efficiency for the studied processes, it was verified that the artificial neural networks MLP 4-9-3 and MLP 5-6-3 well represent the data from the homogeneous and heterogeneous processes, respectively. A toxicity study was carried out using seeds, bacteria and microcrustaceans and it was found that the intermediate compounds formed during the treatment process act differently for each of them.


2018 ◽  
Vol 630 ◽  
pp. 1216-1225 ◽  
Author(s):  
J. Rodríguez-Chueca ◽  
E. Laski ◽  
C. García-Cañibano ◽  
M.J. Martín de Vidales ◽  
Á. Encinas ◽  
...  

2011 ◽  
Vol 11 (1) ◽  
pp. 129-134 ◽  
Author(s):  
A. Dulov ◽  
N. Dulova ◽  
Y. Veressinina ◽  
M. Trapido

The degradation of propoxycarbazone-sodium, an active component of commercial herbicide, in aqueous solution with ozone, UV photolysis and advanced oxidation processes: O3/UV, O3/UV/H2O2, H2O2/UV, and the Fenton process was studied. All these methods of degradation proved feasible. The kinetics of propoxycarbazone-sodium degradation in water followed the pseudo-first order equation for all studied processes except the Fenton treatment. The application of schemes with ozone demonstrated low pseudo-first order rate constants within the range of 10−4 s−1. Addition of UV radiation to the processes improved the removal of propoxycarbazone-sodium and increased the pseudo-first order rate constants to 10−3 s−1. The Fenton process was the most efficient and resulted in 5 and 60 s of half-life and 90% conversion time of propoxycarbazone-sodium, respectively, at 14 mM H2O2 concentration. UV treatment and the Fenton process may be recommended for practical application in decontamination of water or wastewater.


2021 ◽  
Author(s):  
Ali Kamel H. Al jibouri

Industrial wastewater is one of the largest environmental challenges of this century. Most of these wastewaters contain non-biodegradable pollutants which need special treatment methods. Advanced oxidation processes (AOP’s), such as, ozonation, catalytic ozonation and ozone/ hydrogen peroxide have proved their effectiveness on the degradation of bio-recalcitrant pollutants. The main drawback in these processes is the high operating cost. The objective of this study was to develop innovative continuous ozonation and ozone based processes that can effectively degrade industrial non-biodegradable pollutants. Naphthenic acids (NAs) was used as the model pollutant in this study due to its importance as a major pollutant in oil and oil sands industries. The target was to convert bio-recalcitrant NAs into biodegradable substances with minimum consumption of ozone gas (operating cost). These processes can be followed by the biodegradation process to fully remove the rest of the pollutants. This research passed through several stages including screening of operating parameters, kinetic studies, and modeling, followed by optimal control of these processes. It was found that ozone concentration had the most significant effect on the NAs degradation compared to other parameters. The kinetics of direct and indirect (radical) ozonation of NAs were investigated and rate constants and activation energies of these reactions were determined. Catalytic ozonation of NAs was explored using alumina supported metal oxides and unsupported catalysts. Activated carbon was found to be the most effective catalyst. The addition of hydrogen peroxide into the ozonation systems significantly improved the removal of NAs compared with the ozonation only process. Models based on mass balance for the ozonation and ozone/ hydrogen peroxide processes were developed to predict the concentration profiles of reacting species. Optimal control policies of ozone/oxygen gas flow rate versus time were developed and validated to minimize NAs concentration in the liquid outlet stream from the continuous ozonation and ozone/ hydrogen peroxide processes. The experimental results demonstrated that the optimal control policies successfully minimized NAs concentration in the outlet stream. At the same time, ozone gas consumption was reduced to its minimum, i.e., just enough to minimize the concentration of NAs in the outlet stream.


2019 ◽  
Vol 372 ◽  
pp. 94-102 ◽  
Author(s):  
J. Rodríguez-Chueca ◽  
C. García-Cañibano ◽  
R.-J. Lepistö ◽  
Á. Encinas ◽  
J. Pellinen ◽  
...  

2018 ◽  
Vol 59 ◽  
pp. 00017
Author(s):  
Kamil Kuźmiński ◽  
Antoni W. Morawski ◽  
Magdalena Janus

In these studies advanced oxidation processes such as: photolysis, ozonation and photocatalysis for anionic and cationic surfactants decomposition were used. Nitrogen modified titanium dioxide and commercial TiO2-P25 were used for photocatalytic tests. UV-C lamp and different dose of ozone: 186, 383, 478 and 563 mg/(dm3·h) were used. The optimal system for anionic and cationic surfactants decomposition was connection of ozonation with UV-C irradiation.


Sign in / Sign up

Export Citation Format

Share Document