scholarly journals Dissolved and particulate trace metal micronutrients under the McMurdo Sound seasonal sea ice: basal sea ice communities as a capacitor for iron

2013 ◽  
Vol 1 ◽  
Author(s):  
Abigail E. Noble ◽  
Dawn M. Moran ◽  
Andrew E. Allen ◽  
Mak A. Saito
2001 ◽  
Vol 33 ◽  
pp. 339-344 ◽  
Author(s):  
Colin Fox ◽  
Tim G. Haskell ◽  
Hyuck Chung

AbstractWe present a method for measuring the characteristic length of sea ice based on fitting to a recently found solution for the flexural response of a floating ice sheet subject to localized periodic loading. Unlike previous techniques, the method enables localized measurements at single frequencies of geophysical interest, and since the measurements may be synchronously demodulated, gives excellent rejection of unwanted measurement signal (e.g. from ocean swell). The loading mechanism is described and we discuss how the effective characteristic length may be determined using a range of localized measurements. The method is used to determine the characteristic length of the sea ice in McMurdo Sound, Antarctica.


2008 ◽  
Vol 20 (6) ◽  
pp. 593-604 ◽  
Author(s):  
J.-P. Remy ◽  
S. Becquevort ◽  
T.G. Haskell ◽  
J.-L. Tison

AbstractIce cores were sampled at four stations in McMurdo Sound (Ross Sea) between 1999 and 2003. At the beginning of year 2000, a very large iceberg (B-15) detached itself from the Ross Ice Shelf and stranded at the entrance of the Sound, preventing the usual oceanic circulation purging of the annual sea ice cover from this area. Ice textural studies showed that a second year sea ice cover was built-up at three out of the four stations: ice thickness increased to about 3 m. Repeated alternation of columnar and platelet ice appeared, and bulk salinity showed a strong decrease, principally in the upper part of the ice sheet, with associated brine volume decrease. Physical modification influenced the biology as well. By decreasing the light and space available for organisms in the sea ice cover, the stranding of B-15 has i) hampered autotrophic productivity, with chlorophyllaconcentration and algae biomass significantly lower for second year ice stations, and ii) affected trophic relationships such as the bacterial biomass/chlaconcentration correlation, or the autotrophic to heterotrophic ratio.


2011 ◽  
Vol 23 (4) ◽  
pp. 399-409 ◽  
Author(s):  
Gregory H. Leonard ◽  
Patricia J. Langhorne ◽  
Michael J.M. Williams ◽  
Ross Vennell ◽  
Craig R. Purdie ◽  
...  

AbstractHere we describe the evolution through winter of a layer of in situ supercooled water beneath the sea ice at a site close to the McMurdo Ice Shelf. From early winter (May), the temperature of the upper water column was below its surface freezing point, implying contact with an ice shelf at depth. By late winter the supercooled layer was c. 40 m deep with a maximum supercooling of c. 25 mK located 1–2 m below the sea ice-water interface. Transitory in situ supercooling events were also observed, one lasting c. 17 hours and reaching a depth of 70 m. In spite of these very low temperatures the isotopic composition of the water was relatively heavy, suggesting little glacial melt. Further, the water's temperature-salinity signature indicates contributions to water mass properties from High Salinity Shelf Water produced in areas of high sea ice production to the north of McMurdo Sound. Our measurements imply the existence of a heat sink beneath the supercooled layer that extracts heat from the ocean to thicken and cool this layer and contributes to the thickness of the sea ice cover. This sink is linked to the circulation pattern of the McMurdo Sound.


Nature ◽  
1963 ◽  
Vol 200 (4905) ◽  
pp. 462-463 ◽  
Author(s):  
H. W. WELLMAN ◽  
A. T. WILSON
Keyword(s):  
Sea Ice ◽  

2021 ◽  
Author(s):  
◽  
Daniel James Pringle

<p>We present results from measurements of the thermal conductivity of sea ice, ksi, using two different techniques. In the first, ice temperatures were measured at 10 cm and 30 minute intervals by automated thermistor arrays deployed in land-fast first-year (FY) and multi-year (MY) ice in McMurdo Sound, Antarctica, and in FY ice in the Chukchi Sea and shallow Elson Lagoon, near Point Barrow, Alaska. Conductivity profiles through the ice were calculated from the coupled time- and depth- dependence of the temperature variations using a conservation of energy analysis, and a graphical finite difference method. These profiles show a reduction in the conductivity of up to 25% over the top ~ 50 cm, consistent with similar previous measurements. From simulations and a detailed analysis of this method, we have clearly identified this reduction (for which physical explanations had previously been invoked) as an analytical artifact, due to the presence of temperature variations with time scales much less than the 30 min sampling interval. These variations have a penetration depth that is small compared with the thermistor spacing, so the effect is shallow. Between 50 cm and the depth at which the method becomes noise-limited, we calculate average conductivities of 2.29 +/- 0.07 W/m degrees C and 2.26 +/- 0.11 W/m degrees C at the FY McMurdo Sound and Chukchi Sea sites, and 2.03 +/- 0.04 W/m degrees C at the MY site in McMurdo Sound. Using a parallel conductance method, we measured the conductivity of small (11 x 2.4 cm diameter) ice cores by heating one end of a sample holder, and with the other end held at a fixed temperature, measuring the temperature gradient with and without a sample loaded. From several different cores in each class, we resolved no significant difference, and certainly no large reduction, in the conductivity of FY surface (0-10 cm) and sub-surface (45-55 cm) ice, being 2.14 +/- 0.11 W/m degrees C and 2.09 +/- 0.12 W/m degrees C respectively. The conductivity of less dense, bubbly MY ice was measured to be 1.88 +/- 0.13 W/m degrees C. Within measurement uncertainties of about +/-6%, the values from our two methods are consistent with each other and with predictions from our modification of an existing theoretical model for ksi(p, S, T). Both our results and previous measurements give conductivity values about 10% higher than those commonly used in Arctic and Antarctic sea ice models. For FY ice, we tentatively propose a new empirical parameterisation, ksi = 2.09 - 0.011T + 0.117S/T [W/m degrees C], where T is temperature [degrees C] and S salinity [0/00]. We expect this parameterisation to be revised as thermal array data from other researchers are made available. We also report thermal array measurements in ice-cemented permafrost at Table Mountain in the Antarctic Dry Valleys, between November 2001 - December 2003. From 13 months of temperature data with a sampling interval reduced from 4 hours to 1 hour (November 2002 - December 2003), we have modified some aspects of an already published initial analysis [Pringle et al., 2003]. Using thermal diffusivity profiles calculated from measured temperatures, and a heat capacity estimated from recovered cores, we have determined thermal conductivity profiles at two sites that show depth- and seasonal- variations that correlate well with core compositions, and the expected underlying temperature dependence. The conductivity generally lies in the range 2.5 +/- 0.5 W/m degrees C, but is as high as 5.5 +/- 0.4 W/m degrees C in a quartz-rich unit at one site. The wintertime diffusivity is 4 +/- 7% higher than the summertime value, which we understand to reflect the underlying temperature dependence. In this analysis we find our graphical finite difference method more versatile and more accurate than common 'Fourier' time-series methods.</p>


Sign in / Sign up

Export Citation Format

Share Document