scholarly journals Thermal Conductivity of Sea Ice and Antarctic Permafrost

2021 ◽  
Author(s):  
◽  
Daniel James Pringle

<p>We present results from measurements of the thermal conductivity of sea ice, ksi, using two different techniques. In the first, ice temperatures were measured at 10 cm and 30 minute intervals by automated thermistor arrays deployed in land-fast first-year (FY) and multi-year (MY) ice in McMurdo Sound, Antarctica, and in FY ice in the Chukchi Sea and shallow Elson Lagoon, near Point Barrow, Alaska. Conductivity profiles through the ice were calculated from the coupled time- and depth- dependence of the temperature variations using a conservation of energy analysis, and a graphical finite difference method. These profiles show a reduction in the conductivity of up to 25% over the top ~ 50 cm, consistent with similar previous measurements. From simulations and a detailed analysis of this method, we have clearly identified this reduction (for which physical explanations had previously been invoked) as an analytical artifact, due to the presence of temperature variations with time scales much less than the 30 min sampling interval. These variations have a penetration depth that is small compared with the thermistor spacing, so the effect is shallow. Between 50 cm and the depth at which the method becomes noise-limited, we calculate average conductivities of 2.29 +/- 0.07 W/m degrees C and 2.26 +/- 0.11 W/m degrees C at the FY McMurdo Sound and Chukchi Sea sites, and 2.03 +/- 0.04 W/m degrees C at the MY site in McMurdo Sound. Using a parallel conductance method, we measured the conductivity of small (11 x 2.4 cm diameter) ice cores by heating one end of a sample holder, and with the other end held at a fixed temperature, measuring the temperature gradient with and without a sample loaded. From several different cores in each class, we resolved no significant difference, and certainly no large reduction, in the conductivity of FY surface (0-10 cm) and sub-surface (45-55 cm) ice, being 2.14 +/- 0.11 W/m degrees C and 2.09 +/- 0.12 W/m degrees C respectively. The conductivity of less dense, bubbly MY ice was measured to be 1.88 +/- 0.13 W/m degrees C. Within measurement uncertainties of about +/-6%, the values from our two methods are consistent with each other and with predictions from our modification of an existing theoretical model for ksi(p, S, T). Both our results and previous measurements give conductivity values about 10% higher than those commonly used in Arctic and Antarctic sea ice models. For FY ice, we tentatively propose a new empirical parameterisation, ksi = 2.09 - 0.011T + 0.117S/T [W/m degrees C], where T is temperature [degrees C] and S salinity [0/00]. We expect this parameterisation to be revised as thermal array data from other researchers are made available. We also report thermal array measurements in ice-cemented permafrost at Table Mountain in the Antarctic Dry Valleys, between November 2001 - December 2003. From 13 months of temperature data with a sampling interval reduced from 4 hours to 1 hour (November 2002 - December 2003), we have modified some aspects of an already published initial analysis [Pringle et al., 2003]. Using thermal diffusivity profiles calculated from measured temperatures, and a heat capacity estimated from recovered cores, we have determined thermal conductivity profiles at two sites that show depth- and seasonal- variations that correlate well with core compositions, and the expected underlying temperature dependence. The conductivity generally lies in the range 2.5 +/- 0.5 W/m degrees C, but is as high as 5.5 +/- 0.4 W/m degrees C in a quartz-rich unit at one site. The wintertime diffusivity is 4 +/- 7% higher than the summertime value, which we understand to reflect the underlying temperature dependence. In this analysis we find our graphical finite difference method more versatile and more accurate than common 'Fourier' time-series methods.</p>

2021 ◽  
Author(s):  
◽  
Daniel James Pringle

<p>We present results from measurements of the thermal conductivity of sea ice, ksi, using two different techniques. In the first, ice temperatures were measured at 10 cm and 30 minute intervals by automated thermistor arrays deployed in land-fast first-year (FY) and multi-year (MY) ice in McMurdo Sound, Antarctica, and in FY ice in the Chukchi Sea and shallow Elson Lagoon, near Point Barrow, Alaska. Conductivity profiles through the ice were calculated from the coupled time- and depth- dependence of the temperature variations using a conservation of energy analysis, and a graphical finite difference method. These profiles show a reduction in the conductivity of up to 25% over the top ~ 50 cm, consistent with similar previous measurements. From simulations and a detailed analysis of this method, we have clearly identified this reduction (for which physical explanations had previously been invoked) as an analytical artifact, due to the presence of temperature variations with time scales much less than the 30 min sampling interval. These variations have a penetration depth that is small compared with the thermistor spacing, so the effect is shallow. Between 50 cm and the depth at which the method becomes noise-limited, we calculate average conductivities of 2.29 +/- 0.07 W/m degrees C and 2.26 +/- 0.11 W/m degrees C at the FY McMurdo Sound and Chukchi Sea sites, and 2.03 +/- 0.04 W/m degrees C at the MY site in McMurdo Sound. Using a parallel conductance method, we measured the conductivity of small (11 x 2.4 cm diameter) ice cores by heating one end of a sample holder, and with the other end held at a fixed temperature, measuring the temperature gradient with and without a sample loaded. From several different cores in each class, we resolved no significant difference, and certainly no large reduction, in the conductivity of FY surface (0-10 cm) and sub-surface (45-55 cm) ice, being 2.14 +/- 0.11 W/m degrees C and 2.09 +/- 0.12 W/m degrees C respectively. The conductivity of less dense, bubbly MY ice was measured to be 1.88 +/- 0.13 W/m degrees C. Within measurement uncertainties of about +/-6%, the values from our two methods are consistent with each other and with predictions from our modification of an existing theoretical model for ksi(p, S, T). Both our results and previous measurements give conductivity values about 10% higher than those commonly used in Arctic and Antarctic sea ice models. For FY ice, we tentatively propose a new empirical parameterisation, ksi = 2.09 - 0.011T + 0.117S/T [W/m degrees C], where T is temperature [degrees C] and S salinity [0/00]. We expect this parameterisation to be revised as thermal array data from other researchers are made available. We also report thermal array measurements in ice-cemented permafrost at Table Mountain in the Antarctic Dry Valleys, between November 2001 - December 2003. From 13 months of temperature data with a sampling interval reduced from 4 hours to 1 hour (November 2002 - December 2003), we have modified some aspects of an already published initial analysis [Pringle et al., 2003]. Using thermal diffusivity profiles calculated from measured temperatures, and a heat capacity estimated from recovered cores, we have determined thermal conductivity profiles at two sites that show depth- and seasonal- variations that correlate well with core compositions, and the expected underlying temperature dependence. The conductivity generally lies in the range 2.5 +/- 0.5 W/m degrees C, but is as high as 5.5 +/- 0.4 W/m degrees C in a quartz-rich unit at one site. The wintertime diffusivity is 4 +/- 7% higher than the summertime value, which we understand to reflect the underlying temperature dependence. In this analysis we find our graphical finite difference method more versatile and more accurate than common 'Fourier' time-series methods.</p>


2015 ◽  
Vol 50 (6) ◽  
pp. 795-806 ◽  
Author(s):  
Günther Kain ◽  
Johann Charwat-Pessler ◽  
Marius-Catalin Barbu ◽  
Bernhard Plank ◽  
Klaus Richter ◽  
...  

2012 ◽  
Vol 9 (6) ◽  
pp. 3593-3642
Author(s):  
H. Sumata ◽  
F. Kauker ◽  
R. Gerdes ◽  
C. Köberle ◽  
M. Karcher

Abstract. Two types of optimization methods were applied to a parameter optimization problem in a coupled ocean–sea ice model, and applicability and efficiency of the respective methods were examined. One is a finite difference method based on a traditional gradient descent approach, while the other adopts genetic algorithms as an example of stochastic approaches. Several series of parameter optimization experiments were performed by minimizing a cost function composed of model–data misfit of ice concentration, ice drift velocity and ice thickness. The finite difference method fails to estimate optimal parameters due to an ill-shaped nature of the cost function, whereas the genetic algorithms can effectively estimate near optimal parameters with a practical number of iterations. The results of the study indicate that a sophisticated stochastic approach is of practical use to a parameter optimization of a coupled ocean–sea ice model.


Author(s):  
М.Х. Бештоков ◽  
З.В. Бештокова ◽  
М.З. Худалов

В прямоугольной области исследуется нелокальная краевая задача для одномерного по пространственной переменной нагруженного уравнения теплопроводности дробного порядка с сосредоточенной на границе теплоемкостью, выступающего в качестве математической модели, возникающего, в частности, в практике регулирования солевого режима почв с фрактальной организацией, когда расслоение верхнего слоя достигается сливом слоя воды с поверхности, затопленного на некоторое время участка. Основным методом исследования является метод энергетических неравенств. При предположении существования регулярного решения дифференциальной задачи получена априорная оценка, откуда следуют единственность и непрерывная зависимость решения от входных данных задачи. На равномерной сетке в соответствие дифференциальной задаче ставится разностная схема второго порядка аппроксимации по параметрам сетки. Для решения разностной задачи получена априорная оценка в разностной форме, из чего следуют единственность и устойчивость решения по правой части и начальным данным. В силу линейности рассматриваемой задачи полученное неравенство позволяет утверждать сходимость приближенного решения к точному (в~предположении существования последнего в классе достаточно гладких функций) со скоростью, равной порядку погрешности аппроксимации. Проведены численные эксперименты, иллюстрирующие полученные теоретические результаты.


Author(s):  
Khadijah M. Abualnaja

Interaction between nonuniform heat source/sink, magnetic field and thermal radiation with heat flux through the flow of non-Newtonian power-law fluid due to a linearly stretching sheet was studied numerically using an implicit finite difference method (FDM). The heat flux is assumed to depend on both the thermal conductivity and the thermal radiation. Besides, the effects of all governing parameters, such as the magnetic parameter, thermal conductivity parameter, the power-law index parameter, Prandtl number, the space-dependent heat source/sink parameter, the temperature-dependent heat source/sink parameter, and the radiation parameter, on the profiles of velocities and temperature are studied and discussed. In particular, thermal radiation was found to play a key role in the heat transfer characteristics and in the formation of thermal boundary layer. Generally, our numerical results reveal that both the velocity and temperature distributions are marginally influenced by both the magnetic parameter and power-law index. A good agreement is observed between our results via finite difference method and the previously published numerical results for some special case.


Sign in / Sign up

Export Citation Format

Share Document