scholarly journals Heteroaryliodonium(III) Salts as Highly Reactive Electrophiles

2020 ◽  
Vol 8 ◽  
Author(s):  
Naoko Takenaga ◽  
Ravi Kumar ◽  
Toshifumi Dohi

In recent years, the chemistry of heteroaryliodonium(III) salts has undergone significant developments. Heteroaryliodonium(III) salts have been found to be useful synthetic tools for the transfer of heteroaryl groups under metal-catalyzed and metal-free conditions for the preparation of functionalized heteroarene-containing compounds. Synthetic transformations mediated by these heteroaryliodonium(III) salts are classified into two categories: (1) reactions utilizing the high reactivity of the hypervalent iodine(III) species, and (2) reactions based on unique and new reactivities not observed in other types of conventional diaryliodonium salts. The latter feature is of particular interest and so has been intensively investigated in recent decades. This mini-review therefore aims to summarize the recent synthetic applications of heteroaryliodonium(III) salts as highly reactive electrophiles.

Author(s):  
Arumugavel Murugan ◽  
Venkata Nagarjuna Babu ◽  
Nagaraj Sabarinathan ◽  
Sharada Duddu. S

Here we report a visible-light-promoted metal-free regioselective C3-H trifluoromehtylation reaction that proceeds via radical mechanism and which supported by control experiments. The combination of photoredox catalysis and hypervalent iodine reagent provides a practical approach for the present trifluoromethylation reaction and synthesis of a library of trifluoromethylated indazoles.


Author(s):  
Ayesha Jalil ◽  
Yaxin O Yang ◽  
Zhendong Chen ◽  
Rongxuan Jia ◽  
Tianhao Bi ◽  
...  

: Hypervalent iodine reagents are a class of non-metallic oxidants have been widely used in the construction of several sorts of bond formations. This surging interest in hypervalent iodine reagents is essentially due to their very useful oxidizing properties, combined with their benign environmental character and commercial availability from the past few decades ago. Furthermore, these hypervalent iodine reagents have been used in the construction of many significant building blocks and privileged scaffolds of bioactive natural products. The purpose of writing this review article is to explore all the transformations in which carbon-oxygen bond formation occurred by using hypervalent iodine reagents under metal-free conditions


2015 ◽  
Vol 39 (2) ◽  
pp. 805-809 ◽  
Author(s):  
Nagireddy Veera Reddy ◽  
Pailla Santhosh Kumar ◽  
Peddi Sudhir Reddy ◽  
Mannepalli Lakshmi Kantam ◽  
Kallu Rajender Reddy

A direct transformation of N-aryl formamides to the corresponding phenylurea derivatives via the formation of isocyanate intermediates is achieved in good yields using hypervalent iodine reagents as external oxidants.


Synthesis ◽  
2021 ◽  
Author(s):  
Heather Lam ◽  
Mark Lautens ◽  
Xavier Abel-Snape ◽  
Martin F. Köllen

Abstract(4+3)-Annulations are incredibly versatile reactions which combine a 4-atom synthon and a 3-atom synthon to form both 7-membered carbocycles as well as heterocycles. We have previously reviewed transition-metal-catalyzed (4+3)-annulations. In this review, we will cover examples involving bases, NHCs, phosphines, Lewis and Brønsted acids as well as some rare examples of boronic acid catalysis and photocatalysis. In analogy to our previous review, we exclude annulations involving cyclic dienes like furan, pyrrole, cyclohexadiene or cyclopentadiene, as Chiu, Harmata, Fernándes and others have recently published reviews encompassing such substrates. We will however discuss the recent additions (2010–2020) to the literature on (4+3)-annulations involving other types of 4-atom-synthons.1 Introduction2 Bases3 Annulations Using N-Heterocyclic Carbenes3.1 N-Heterocyclic Carbenes (NHCs)3.2 N-Heterocyclic Carbenes and Base Dual-Activation4 Phosphines5 Acids5.1 Lewis Acids5.2 Brønsted Acids6 Boronic Acid Catalysis and Photocatalysis7 Conclusion


Synthesis ◽  
2021 ◽  
Author(s):  
Wey-Chyng Jeng ◽  
Po-Chung Chien ◽  
Sandip Sambhaji Vagh ◽  
Athukuri Edukondalu ◽  
Wenwei Lin

We report an efficient method for the direct β-acylation of 2-ylideneoxindoles with acyl chlorides in the presence of base-catalyzed by organophosphanes. A variety of functionalized 2-ylideneoxindoles were prepared in moderate to good yields under metal-free and mild conditions via a tandem phospha-Michael/O-acylation/intramolecular cyclization/ rearrangement sequence. The mechanistic investigations revealed that the C-O bond cleavage on possible betaine intermediate is the key step for the installation of keto-functionality at β-position of 2-ylideneoxindoles in a highly stereospecific manner. The synthetic utility of this protocol could also be proven by scale-up reactions and synthetic transformations of the products.


2018 ◽  
Vol 3 (45) ◽  
pp. 12946-12950 ◽  
Author(s):  
Delie An ◽  
Wenkang Song ◽  
Zhihong Peng ◽  
Yingjun Zhang ◽  
Wanrong Dong

Sign in / Sign up

Export Citation Format

Share Document