scholarly journals Different Benzendicarboxylate-Directed Structural Variations and Properties of Four New Porous Cd(II)-Pyridyl-Triazole Coordination Polymers

2020 ◽  
Vol 8 ◽  
Author(s):  
Ying Zhao ◽  
Jin Jing ◽  
Ning Yan ◽  
Min-Le Han ◽  
Guo-Ping Yang ◽  
...  

Four new different porous crystalline Cd(II)-based coordination polymers (CPs), i. e., [Cd(mdpt)2]·2H2O (1), [Cd2(mdpt)2(m-bdc)(H2O)2] (2), [Cd(Hmdpt)(p-bdc)]·2H2O (3), and [Cd3(mdpt)2(bpdc)2]·2.5NMP (4), were obtained successfully by the assembly of Cd(II) ions and bitopic 3-(3-methyl-2-pyridyl)-5-(4-pyridyl)-1,2,4-triazole (Hmdpt) in the presence of various benzendicarboxylate ligands, i.e., 1,3/1,4-benzenedicarboxylic acid (m-H2bdc, p-H2bdc) and biphenyl-4,4′-bicarboxylate (H2bpdc). Herein, complex 1 is a porous 2-fold interpenetrated four-connected 3D NbO topological framework based on the mdpt− ligand; 2 reveals a two-dimensional (2D) hcb network. Interestingly, 3 presents a three-dimensional (3D) rare interpenetrated double-insertion supramolecular net via 2D ···ABAB··· layers and can be viewed as an fsh topological net, while complex 4 displays a 3D sqc117 framework. Then, the different gas sorption performances were carried out carefully for complexes 1 and 4, the results of which showed 4 has preferable sorption than that of 1 and can be the potential CO2 storage and separation material. Furthermore, the stability and luminescence of four complexes were performed carefully in the solid state.

2020 ◽  
pp. 174751982096816
Author(s):  
Fang-Kuo Wang ◽  
Shi-Yao Yang ◽  
Hua-Ze Dong

Two coordination polymers with two-dimensional and three-dimensional structures are, {[Zn3(bdc)3(py)2]·2NMP}n (1) (H2bdc = 1,4-benzenedicarboxylic acid) and [Zn2(NO3−)(btc)(nmp)2(py)]n (2) (H3btc = 1,3,5-benzenetricarboxylic acid), synthesized by hot-solution reactions of Zn(NO3)2·6H2O, pyridine (py) and two different ligands in N-methylpyrrolidone (NMP). {[Zn3(bdc)3(py)2]·2NMP}n exhibits two-dimensional networks with trizinc subunits [Zn3(COO)6py2] stacking with a layer-by-layer alignment, and there are strong π–π interactions involving py from adjacent layers. [Zn2(NO3−)(btc)(nmp)2(py)]n has a three-dimensional structure containing two independent zinc ions, tetrahedral ZnO4 and octahedral ZnNO5. Based on X-ray studies, the coordination polymers {[Zn3(bdc)3(py)2]·2NMP}n (1) have a porous structure with NMP guest molecules. In contrast, X-ray studies revealed that coordination polymer [Zn2(NO3−)(btc)(nmp)2(py)]n (2) had a larger void that was inhabited by coordinated py and NMP. In addition, the form of the two coordination polymers changed from two-dimensional to three-dimensional with transformation of the ligand geometry.


Author(s):  
Yue-Feng Zhang ◽  
Jian-Ping Ma ◽  
Qi-Kui Liu ◽  
Yu-Bin Dong

A novel bridging asymmetric benzimidazole ligand, 4-{2-[3-(pyridin-4-yl)phenyl]-1H-benzimidazol-1-ylmethyl}benzoic acid, was used to construct three isomorphous two-dimensional coordination polymers, namelycatena-poly[chlorido(μ3-4-{2-[3-(pyridin-4-yl)phenyl]-1H-benzimidazol-1-ylmethyl}benzoato)zinc(II)], [Zn(C26H18N3O2)Cl]n, (I), and the bromide, (II), and iodide, (III), analogues. Neighbouring two-dimensional networks are stacked into three-dimensional frameworksviainterlayer π–π interactions. The luminescent properties of (I)–(III) were investigated and they display an obvious red-shift in the solid state at room temperature.


2002 ◽  
Vol 06 (06) ◽  
pp. 377-381 ◽  
Author(s):  
Margaret E. Kosal ◽  
Jun-Hong Chou ◽  
Kenneth S. Suslick

The hydrothermal assembly of a very stable porphyrin network with nanoscale cavities is described. A tightly packed and interpenetrated, linear polymeric framework was observed in the solid-state X-ray structure of freebase 5,10,15,20-tetrakis-(4-carboxyphenyl)porphyrin coordinated to calcium(II) ions. Strong hydrogen-bonding interactions between the coordination polymers form a two-dimensional network. Perpendicular bands interpenetrate generating an unusual three-dimensional box that clathrates a pyridine molecule.


Author(s):  
Olha Sereda ◽  
Helen Stoeckli-Evans

The title compounds,catena-poly[[[bis[(R)-propane-1,2-diamine-κ2N,N′]copper(II)]-μ-cyanido-κ2N:C-[tris(cyanido-κC)(nitroso-κN)iron(III)]-μ-cyanido-κ2C:N] monohydrate], {[Cu(Lpn)2][Fe(CN)5(NO)]·H2O}n, (I), and poly[[hexa-μ-cyanido-κ12C:N-hexacyanido-κ6C-hexakis[(R)-propane-1,2-diamine-κ2N,N′]dichromium(III)tricopper(II)] pentahydrate], {[Cu(Lpn)2]3[Cr(CN)6]2·5H2O}n, (II) [where Lpn = (R)-propane-1,2-diamine, C3H10N2], are new chiral cyanide-bridged bimetallic coordination polymers. The asymmetric unit of compound (I) is composed of two independent cation–anion units of {[Cu(Lpn)2][Fe(CN)5)(NO)]} and two water molecules. The FeIIIatoms have distorted octahedral geometries, while the CuIIatoms can be considered to be pentacoordinate. In the crystal, however, the units align to form zigzag cyanide-bridged chains propagating along [101]. Hence, the CuIIatoms have distorted octahedral coordination spheres with extremely long semicoordination Cu—N(cyanido) bridging bonds. The chains are linked by O—H...N and N—H...N hydrogen bonds, forming two-dimensional networks parallel to (010), and the networks are linkedviaN—H...O and N—H...N hydrogen bonds, forming a three-dimensional framework. Compound (II) is a two-dimensional cyanide-bridged coordination polymer. The asymmetric unit is composed of two chiral {[Cu(Lpn)2][Cr(CN)6]}−anions bridged by a chiral [Cu(Lpn)2]2+cation and five water molecules of crystallization. Both the CrIIIatoms and the central CuIIatom have distorted octahedral geometries. The coordination spheres of the outer CuIIatoms of the asymmetric unit can be considered to be pentacoordinate. In the crystal, these units are bridged by long semicoordination Cu—N(cyanide) bridging bonds forming a two-dimensional network, hence these CuIIatoms now have distorted octahedral geometries. The networks, which lie parallel to (10-1), are linkedviaO—H...O, O—H...N, N—H...O and N—H...N hydrogen bonds involving all five non-coordinating water molecules, the cyanide N atoms and the NH2groups of the Lpn ligands, forming a three-dimensional framework.


2018 ◽  
Vol 74 (8) ◽  
pp. 894-900 ◽  
Author(s):  
Lin Wang ◽  
Qian-Kun Zhou ◽  
Yun Xu ◽  
Ni-Ya Li

In recent years, the design and construction of crystalline coordination complexes by the assembly of metal ions with multitopic ligands have attracted considerable attention because of the unique architectures and potential applications of these compounds. Two new coordination polymers, namely poly[[μ-trans-1-(2-aminopyridin-3-yl)-2-(pyridin-4-yl)ethene-κ2 N:N′](μ3-5-methylisophthalato-κ4 O 1,O 1′:O 3:O 3′)cadmium(II)], [Cd(C9H6O4)(C12H11N3)] n or [Cd(5-Me-ip)(2-NH2-3,4-bpe)] n , (I), and poly[[μ-trans-1-(2-aminopyridin-3-yl)-2-(pyridin-4-yl)ethene-κ2 N:N′](μ2-5-hydroxyisophthalato-κ4 O 1,O 1′:O 3:O 5)cadmium(II)], [Cd(C8H4O5)(C12H11N3)] n or [Cd(5-HO-ip)(2-NH2-3,4-bpe)] n , (II), have been prepared hydrothermally by the self-assembly of Cd(NO3)2·4H2O and trans-1-(2-aminopyridin-3-yl)-2-(pyridin-4-yl)ethene (2-NH2-3,4-bpe) with two similar dicarboxylic acids, i.e. 5-methylisophthalic acid (5-Me-H2ip) and 5-hydroxyisophthalic acid (5-HO-H2ip). The coordination network of (I) is a two-dimensional sql net parallel to (101). Adjacent sql nets are further linked to form a three-dimensional supramolecular framework via hydrogen-bonding interactions. Compound (II) is a two-dimensional (3,5)-connected coordination network parallel to (010) with the point symbol (63)(55647). As the other reactants and reaction conditions are the same, the structural differences between (I) and (II) are undoubtedly determined by the different substituent groups in the 5-position of isophthalic acid. Both (I) and (II) exhibit good thermal stabilities and photoluminescence properties.


2018 ◽  
Vol 74 (5) ◽  
pp. 599-603 ◽  
Author(s):  
Yan-Ju Liu ◽  
Di Cheng ◽  
Ya-Xue Li ◽  
Xiang-Ru Meng ◽  
Huai-Xia Yang

In recent years, N-heterocyclic carboxylate ligands have attracted much interest in the preparation of new coordination polymers since they contain N-atom donors, as well as O-atom donors, and have a rich variety of coordination modes which can lead to polymers with intriguing structures and interesting properties. A new two-dimensional coordination polymer, namely poly[[μ3-2,2′-(1,2-phenylene)bis(4-carboxy-1H-imidazole-5-carboxylato)-κ6 O 4,N 3,N 3′,O 4′:O 5:O 5′]manganese(II)], [Mn(C16H8N4O8)] n or [Mn(H4Phbidc)] n , has been synthesized by the reaction of Mn(OAc)2·4H2O (OAc is acetate) with 2,2′-(1,2-phenylene)bis(1H-imidazole-4,5-dicarboxylic acid) (H6Phbidc) under solvothermal conditions. In the polymer, each MnII ion is six-coordinated by two N atoms from one H4Phbidc2− ligand and by four O atoms from three H4Phbidc2− ligands, forming a significantly distorted octahedral MnN2O4 coordination geometry. The MnII ions are linked by hexadentate H4Phbidc2− ligands, leading to a two-dimensional structure parallel to the ac plane. In the crystal, adjacent layers are further connected by N—H...O hydrogen bonds, forming a three-dimensional structure in the solid state.


2018 ◽  
Vol 841 ◽  
pp. 636-653
Author(s):  
Ting-Yueh Chang ◽  
Falin Chen ◽  
Min-Hsing Chang

A three-dimensional linear stability analysis is carried out for a convecting layer in which both the temperature and solute distributions are linear in the horizontal direction. The three-dimensional results show that, for $Le=3$ and 100, the most unstable mode occurs invariably as the longitudinal mode, a vortex roll with its axis perpendicular to the longitudinal plane, suggesting that the two-dimensional results are sufficient to illustrate the stability characteristics of the convecting layer. Two-dimensional results show that the stability boundaries of the transverse mode (a vortex roll with its axis perpendicular to the transverse plane) and the longitudinal modes are virtually overlapped in the regime dominated by thermal diffusion and the regime dominated by solute diffusion, while these two modes hold a significant difference in the regime the salt-finger instability prevails. More precisely, the instability area in terms of thermal Grashof number $Gr$ and solute Grashof number $Gs$ is larger for the longitudinal mode than the transverse mode, implying that, under any circumstance, the longitudinal mode is always more unstable than the transverse mode.


2019 ◽  
Vol 75 (4) ◽  
pp. 443-450
Author(s):  
Guiying Zhu ◽  
Yang Lu ◽  
Guoxia Jin ◽  
Xuan Ji ◽  
Jianping Ma

Three new one- (1D) and two-dimensional (2D) CuII coordination polymers, namely poly[[bis{μ2-4-amino-3-(pyridin-2-yl)-5-[(pyridin-3-ylmethyl)sulfanyl]-1,2,4-triazole}copper(II)] bis(methanesulfonate) tetrahydrate], {[Cu(C13H12N5S)2](CH3SO3)2·4H2O} n (1), catena-poly[[copper(II)-bis{μ2-4-amino-3-(pyridin-2-yl)-5-[(pyridin-4-ylmethyl)sulfanyl]-1,2,4-triazole}] dinitrate methanol disolvate], {[Cu(C13H12N5S)2](NO3)2·2CH3OH} n (2), and catena-poly[[copper(II)-bis{μ2-4-amino-3-(pyridin-2-yl)-5-[(pyridin-4-ylmethyl)sulfanyl]-1,2,4-triazole}] bis(perchlorate) monohydrate], {[Cu(C13H12N5S)2](ClO4)2·H2O} n (3), were obtained from 4-amino-3-(pyridin-2-yl)-5-[(pyridin-3-ylmethyl)sulfanyl]-1,2,4-triazole with pyridin-3-yl terminal groups and from 4-amino-3-(pyridin-2-yl)-5-[(pyridin-4-ylmethyl)sulfanyl]-1,2,4-triazole with pyridin-4-yl terminal groups. Compound 1 displays a 2D net-like structure. The 2D layers are further linked through hydrogen bonds between methanesulfonate anions and amino groups on the framework and guest H2O molecules in the lattice to form a three-dimensional (3D) structure. Compound 2 and 3 exhibit 1D chain structures, in which the complicated hydrogen-bonding interactions play an important role in the formation of the 3D network. These experimental results indicate that the coordination orientation of the heteroatoms on the ligands has a great influence on the polymeric structures. Moreover, the selection of different counter-anions, together with the inclusion of different guest solvent molecules, would also have a great effect on the hydrogen-bonding systems in the crystal structures.


2020 ◽  
Vol 76 (11) ◽  
pp. 1024-1033
Author(s):  
Fang-Hua Zhao ◽  
Shi-Yao Li ◽  
Wen-Yu Guo ◽  
Zi-Hao Zhao ◽  
Xiao-Wen Guo ◽  
...  

Two new CdII MOFs, namely, two-dimensional (2D) poly[[[μ2-1,4-bis(1H-benzimidazol-1-yl)butane](μ2-heptanedioato)cadmium(II)] tetrahydrate], {[Cd(C7H10O4)(C18H18N4)]·4H2O} n or {[Cd(Pim)(bbimb)]·4H2O} n (1), and 2D poly[diaqua[μ2-1,4-bis(1H-benzimidazol-1-yl)butane](μ4-decanedioato)(μ2-decanedioato)dicadmium(II)], [Cd2(C10H16O4)2(C18H18N4)(H2O)2] n or [Cd(Seb)(bbimb)0.5(H2O)] n (2), have been synthesized hydrothermally based on the 1,4-bis(1H-benzimidazol-1-yl)butane (bbimb) and pimelate (Pim2−, heptanedioate) or sebacate (Seb2−, decanedioate) ligands. Both MOFs were structurally characterized by single-crystal X-ray diffraction. In 1, the CdII centres are connected by bbimb and Pim2− ligands to generate a 2D sql layer structure with an octameric (H2O)8 water cluster. The 2D layers are further connected by O—H...O hydrogen bonds, resulting in a three-dimensional (3D) supramolecular structure. In 2, the CdII centres are coordinated by Seb2− ligands to form binuclear Cd2 units which are linked by bbimb and Seb2− ligands into a 2D hxl layer. The 2D layers are further connected by O—H...O hydrogen bonds, leading to an 8-connected 3D hex supramolecular network. IR and UV–Vis spectroscopy, thermogravimetric analysis and solid-state photoluminescence analysis were carried out on both MOFs. Luminescence sensing experiments reveal that both MOFs have good selective sensing towards Fe3+ in aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document