scholarly journals Allosteric Modulator Leads Hiding in Plain Site: Developing Peptide and Peptidomimetics as GPCR Allosteric Modulators

2021 ◽  
Vol 9 ◽  
Author(s):  
Keith M. Olson ◽  
John R. Traynor ◽  
Andrew Alt

Allosteric modulators (AMs) of G-protein coupled receptors (GPCRs) are desirable drug targets because they can produce fewer on-target side effects, improved selectivity, and better biological specificity (e.g., biased signaling or probe dependence) than orthosteric drugs. An underappreciated source for identifying AM leads are peptides and proteins—many of which were evolutionarily selected as AMs—derived from endogenous protein-protein interactions (e.g., transducer/accessory proteins), intramolecular receptor contacts (e.g., pepducins or extracellular domains), endogenous peptides, and exogenous libraries (e.g., nanobodies or conotoxins). Peptides offer distinct advantages over small molecules, including high affinity, good tolerability, and good bioactivity, and specific disadvantages, including relatively poor metabolic stability and bioavailability. Peptidomimetics are molecules that combine the advantages of both peptides and small molecules by mimicking the peptide’s chemical features responsible for bioactivity while improving its druggability. This review 1) discusses sources and strategies to identify peptide/peptidomimetic AMs, 2) overviews strategies to convert a peptide lead into more drug-like “peptidomimetic,” and 3) critically analyzes the advantages, disadvantages, and future directions of peptidomimetic AMs. While small molecules will and should play a vital role in AM drug discovery, peptidomimetics can complement and even exceed the advantages of small molecules, depending on the target, site, lead, and associated factors.

2019 ◽  
Vol 20 (10) ◽  
pp. 2383 ◽  
Author(s):  
Andy Chi-Lung Lee ◽  
Janelle Louise Harris ◽  
Kum Kum Khanna ◽  
Ji-Hong Hong

Protein–protein interactions (PPIs) execute many fundamental cellular functions and have served as prime drug targets over the last two decades. Interfering intracellular PPIs with small molecules has been extremely difficult for larger or flat binding sites, as antibodies cannot cross the cell membrane to reach such target sites. In recent years, peptides smaller size and balance of conformational rigidity and flexibility have made them promising candidates for targeting challenging binding interfaces with satisfactory binding affinity and specificity. Deciphering and characterizing peptide–protein recognition mechanisms is thus central for the invention of peptide-based strategies to interfere with endogenous protein interactions, or improvement of the binding affinity and specificity of existing approaches. Importantly, a variety of computation-aided rational designs for peptide therapeutics have been developed, which aim to deliver comprehensive docking for peptide–protein interaction interfaces. Over 60 peptides have been approved and administrated globally in clinics. Despite this, advances in various docking models are only on the merge of making their contribution to peptide drug development. In this review, we provide (i) a holistic overview of peptide drug development and the fundamental technologies utilized to date, and (ii) an updated review on key developments of computational modeling of peptide–protein interactions (PepPIs) with an aim to assist experimental biologists exploit suitable docking methods to advance peptide interfering strategies against PPIs.


Endocrinology ◽  
2013 ◽  
Vol 154 (10) ◽  
pp. 3925-3930 ◽  
Author(s):  
Xiuyan Feng ◽  
Meilin Zhang ◽  
Rongbin Guan ◽  
Deborah L. Segaloff

The LH receptor (LHR) and FSH receptor (FSHR) are each G protein-coupled receptors that play critical roles in reproductive endocrinology. Each of these receptors has previously been shown to self-associate into homodimers and oligomers shortly after their biosynthesis. As shown herein using bioluminescence resonance energy transfer to detect protein-protein interactions, our data show that the LHR and FSHR, when coexpressed in the same cells, specifically heterodimerize with each other. Further experiments confirm that at least a portion of the cellular LHR/FSHR heterodimers are present on the cell surface and are functional. We then sought to ascertain what effects, if any, heterodimerization between the LHR and FSHR might have on signaling. It was observed that when the LHR was expressed under conditions promoting the heterodimerization with FSHR, LH or human chorionic gonadotropin (hCG) stimulation of Gs was attenuated. Conversely, when the FSHR was expressed under conditions promoting heterodimerization with the LHR, FSH-stimulated Gs activation was attenuated. These results demonstrate that the coexpression of the LHR and FSHR enables heterodimerizaton between the 2 gonadotropin receptors and results in an attenuation of signaling through each receptor.


Author(s):  
Alexander Goncearenco ◽  
Minghui Li ◽  
Franco L. Simonetti ◽  
Benjamin A. Shoemaker ◽  
Anna R. Panchenko

MedChemComm ◽  
2017 ◽  
Vol 8 (12) ◽  
pp. 2216-2227 ◽  
Author(s):  
Wiktoria Jedwabny ◽  
Szymon Kłossowski ◽  
Trupta Purohit ◽  
Tomasz Cierpicki ◽  
Jolanta Grembecka ◽  
...  

A computationally affordable, non-empirical model based on electrostatic multipole and dispersion terms successfully predicts the binding affinity of inhibitors of menin–MLL protein–protein interactions.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Anke Bill ◽  
Sheryll Espinola ◽  
Daniel Guthy ◽  
Jacob R. Haling ◽  
Mylene Lanter ◽  
...  

AbstractWe present two high-throughput compatible methods to detect the interaction of ectopically expressed (RT-Bind) or endogenously tagged (EndoBind) proteins of interest. Both approaches provide temporal evaluation of dimer formation over an extended duration. Using examples of the Nrf2-KEAP1 and the CRAF-KRAS-G12V interaction, we demonstrate that our method allows for the detection of signal for more than 2 days after substrate addition, allowing for continuous monitoring of endogenous protein-protein interactions in real time.


2004 ◽  
Vol 238 (2) ◽  
pp. 119-130 ◽  
Author(s):  
John M. Peltier ◽  
Srdjan Askovic ◽  
Robert R. Becklin ◽  
Cindy Lou Chepanoske ◽  
Yew-Seng J. Ho ◽  
...  

2010 ◽  
Vol 86 (1) ◽  
pp. A32
Author(s):  
Alba Chimirri ◽  
Laura De Luca ◽  
Stefania Ferro ◽  
Rosaria Gitto ◽  
Anna Maria Monforte ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document