scholarly journals Applying TADF Emitters in Bioimaging and Sensing—A Novel Approach Using Liposomes for Encapsulation and Cellular Uptake

2021 ◽  
Vol 9 ◽  
Author(s):  
Poppy O. Smith ◽  
Dominic J. Black ◽  
Robert Pal ◽  
João Avó ◽  
Fernando B. Dias ◽  
...  

A new method for facilitating the delivery, uptake and intracellular localisation of thermally activated delayed fluorescence (TADF) complexes was developed. First, confinement of TADF complexes in liposomes was demonstrated, which were subsequently used as the delivery vehicle for cellular uptake. Confocal fluorescence microscopy showed TADF complexes subsequently localise in the cytoplasm of HepG2 cells. The procedures developed in this work included the removal of molecular oxygen in the liposome preparation without disrupting the liposome structures. Time-resolved fluorescence microscopy (point scanning) showed initial prompt fluorescence followed by a weak, but detectable, delayed fluorescence component for liposomal TADF internalised in HepG2 cells. By demonstrating that it is possible to deliver un-functionalised and/or unshielded TADF complexes, a sensing function for TADFs, such as molecular oxygen, can be envisaged.

2020 ◽  
Author(s):  
Masaki Saigo ◽  
Kiyoshi Miyata ◽  
Hajime Nakanotani ◽  
Chihaya Adachi ◽  
Ken Onda

We have investigated the solvent-dependence of structural changes along with intersystem crossing of a thermally activated delayed fluorescence (TADF) molecule, 3,4,5-tri(9H-carbazole-9-yl)benzonitrile (o-3CzBN), in toluene, tetrahydrofuran, and acetonitrile solutions using time-resolved infrared (TR-IR) spectroscopy and DFT calculations. We found that the geometries of the S1 and T1 states are very similar in all solvents though the photophysical properties mostly depend on the solvent. In addition, the time-dependent DFT calculations based on these geometries suggested that the thermally activated delayed fluorescence process of o-3CzBN is governed more by the higher-lying excited states than by the structural changes in the excited states.<br>


2019 ◽  
Vol 7 (22) ◽  
pp. 6616-6621 ◽  
Author(s):  
Przemyslaw Data ◽  
Masato Okazaki ◽  
Satoshi Minakata ◽  
Youhei Takeda

The time-resolved photophysical analysis of a multi-color-changing mechanochromic luminescent compound has been disclosed, which reveals distinct different emission paths to boost TADF and RTP of the emitter depending on its molecular conformations.


2020 ◽  
Author(s):  
Masaki Saigo ◽  
Kiyoshi Miyata ◽  
Hajime Nakanotani ◽  
Chihaya Adachi ◽  
Ken Onda

We have investigated the solvent-dependence of structural changes along with intersystem crossing of a thermally activated delayed fluorescence (TADF) molecule, 3,4,5-tri(9H-carbazole-9-yl)benzonitrile (o-3CzBN), in toluene, tetrahydrofuran, and acetonitrile solutions using time-resolved infrared (TR-IR) spectroscopy and DFT calculations. We found that the geometries of the S1 and T1 states are very similar in all solvents though the photophysical properties mostly depend on the solvent. In addition, the time-dependent DFT calculations based on these geometries suggested that the thermally activated delayed fluorescence process of o-3CzBN is governed more by the higher-lying excited states than by the structural changes in the excited states.<br>


2016 ◽  
Vol 2 (1) ◽  
pp. e1500889 ◽  
Author(s):  
Larissa Bergmann ◽  
Gordon J. Hedley ◽  
Thomas Baumann ◽  
Stefan Bräse ◽  
Ifor D. W. Samuel

Intersystem crossing in thermally activated delayed fluorescence (TADF) materials is an important process that controls the rate at which singlet states convert to triplets; however, measuring this directly in TADF materials is difficult. TADF is a significant emerging technology that enables the harvesting of triplets as well as singlet excited states for emission in organic light emitting diodes. We have observed the picosecond time-resolved photoluminescence of a highly luminescent, neutral copper(I) complex in the solid state that shows TADF. The time constant of intersystem crossing is measured to be 27 picoseconds. Subsequent overall reverse intersystem crossing is slow, leading to population equilibration and TADF with an average lifetime of 11.5 microseconds. These first measurements of intersystem crossing in the solid state in this class of mononuclear copper(I) complexes give a better understanding of the excited-state processes and mechanisms that ensure efficient TADF.


2000 ◽  
Vol 104 (48) ◽  
pp. 11265-11269 ◽  
Author(s):  
Sergei M. Bachilo ◽  
Angelo F. Benedetto ◽  
R. Bruce Weisman ◽  
Jamie R. Nossal ◽  
W. Edward Billups

Sign in / Sign up

Export Citation Format

Share Document