scholarly journals Physical and Electrochemical Properties of Soluble 3,4-Ethylenedioxythiophene (EDOT)-Based Copolymers Synthesized via Direct (Hetero)Arylation Polymerization

2021 ◽  
Vol 9 ◽  
Author(s):  
Qiang Guo ◽  
Jincheng Zhang ◽  
Xiaoyu Li ◽  
Heqi Gong ◽  
Shuanghong Wu ◽  
...  

Over the past decades, π-conjugated polymers (CPs) have drawn more and more attention and been essential materials for applications in various organic electronic devices. Thereinto, conjugated polymers based on the 3,4-ethylenedioxythiophene (EDOT) backbone are among the high-performance materials. In order to investigate the structure–property relationships of EDOT-based polymers and further improve their electrochemical properties, a series of organic solvent–soluble EDOT-based alternative copolymers consisting of electron-rich fragments (fluorene P1, carbazole P2, and 3,4-alkoxythiophene P3) or electron-deficient moieties (benzotriazole P4 and thieno[3,4-c]pyrrole-4,6-dione P5) were synthesized via direct C–H (hetero)arylation polymerization (DHAP) in moderate to excellent yields (60–98%) with medium to high molecular weights (Mn = 3,100–94,000 Da). Owing to their various electronic and structural properties, different absorption spectra (λmax = 476, 380, 558, 563, and 603 nm) as well as different specific capacitances of 70, 68, 75, 51, and 25 F/g with 19, 10, 21, 26, and 69% of capacity retention after 1,000 cycles were observed for P1–P5, respectively. After careful study through multiple experimental measurements and theoretical calculation, appropriate electronic characteristics, small molecular conformation differences between different oxidative states, and well-ordered molecular stacking could improve the electrochemical performance of CPs.

1993 ◽  
Vol 328 ◽  
Author(s):  
Richard D. McCullough ◽  
Shawn P. Williams ◽  
Manikandan Jayaraman ◽  
Jerry Reddinger ◽  
Lynnette Miller ◽  
...  

ABSTRACTDesigned synthesis and architectural assembly of head-to-tail polythiophene derivatives provide the ability to control π orbital topology and orbital interactions in conjugated polymers. The preparation of polythiophene derivatives with essentially 100% head-to tail (HT) couplings leads to defect free polythiophenes. These new HT polythiophenes can undergo macromolecular self-assembly to give self-oriented conducting polymers. Study of these materials has led to new insights on structure-property relationships in this class of Materials. In addition, these results show that the molecular orbital overlap, the band dimensionality, and the solid state structure are quite sensitive to the nature of the side chains attached to the polymer's backbone. In addition, we have now synthesized the first heteroatom functionalized HT polythiophenes. These polythiophene derivatives can bind cations, and ion recognition can be used to tune conjugation lengths and properties in polythiophenes. Also presented are a class of random HT coupled 3-alkylthiophenes whose optical and electrochemical properties and possibly electronic properties can be altered by recipe.


2020 ◽  
Author(s):  
Wenda Shi ◽  
Francesco Salerno ◽  
Alejandro Santana-Bonilla ◽  
Matthew Ward ◽  
Xueyan Hou ◽  
...  

<p>Solubilized fullerene derivatives have revolutionised the development of organic photovoltaic devices, acting as excellent electron acceptors. The addition of solubilizing addends to the fullerene cage results in a large number of isomers, which are generally employed as isomeric mixtures. Moreover, a significant number of these isomers are chiral, which further adds to the isomeric complexity. The opportunities presented by single isomer, and particularly single enantiomer, fullerenes in organic electronic materials and devices are poorly understood. Here we separate 10 pairs of enantiomers from the 19 structural isomers of bis[60]PCBM, using them to elucidate important chiroptical structure-property relationships and demonstrating their application to a single enantiomer circularly polarized (CP) light detecting device. We find that larger chiroptical responses occur through inherent chirality of the fullerene cage and particularly through transitions with low CT character. When used in a single enantiomer organic field-effect transistor device, we demonstrate the potential to discriminate CP light with a fast light response time and with a very high photocurrent dissymmetry factor (<i>g<sub>ph</sub></i> = ±1.35). Our study thus provides key strategies to design fullerenes with large chiroptical responses for use as single enantiomer components of organic electronic devices. We anticipate that our data will position chiral fullerenes as an exciting material class for the growing field of chiral electronic technologies.</p>


2019 ◽  
Vol 10 (39) ◽  
pp. 5339-5347
Author(s):  
Christoph Ulbricht ◽  
Nassima Bouguerra ◽  
Samuel Inack Ngi ◽  
Oliver Brüggemann ◽  
Daniel A. M. Egbe

A detailed spectroscopic study of nine conjugated polymers with various octyloxy/2-ethylhexyloxy side chain sequences prepared using optimized regio-selective synthetic pathways.


1989 ◽  
Vol 116 (1) ◽  
pp. 179-195 ◽  
Author(s):  
A. Schaper ◽  
D. Zenke ◽  
E. Schulz ◽  
R. Hirte ◽  
M. Taege

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1665 ◽  
Author(s):  
Ali Reza Zanjanijam ◽  
Ian Major ◽  
John G. Lyons ◽  
Ugo Lafont ◽  
Declan M. Devine

Poly (ether ether ketone) (PEEK) is a high-performance engineering thermoplastic polymer with potential for use in a variety of metal replacement applications due to its high strength to weight ratio. This combination of properties makes it an ideal material for use in the production of bespoke replacement parts for out-of-earth manufacturing purposes, in particular on the International Space Station (ISS). Additive manufacturing (AM) may be employed for the production of these parts, as it has enabled new fabrication pathways for articles with complex design considerations. However, AM of PEEK via fused filament fabrication (FFF) encounters significant challenges, mostly stemming from the semi crystalline nature of PEEK and its associated high melting temperature. This makes PEEK highly susceptible to changes in processing conditions which leads to a large reported variation in the literature on the final performance of PEEK. This has limited the adaption of FFF printing of PEEK in space applications where quality assurance and reproducibility are paramount. In recent years, several research studies have examined the effect of printing parameters on the performance of the 3D-printed PEEK parts. The aim of the current review is to provide comprehensive information in relation to the process-structure-property relationships in FFF 3D-printing of PEEK to provide a clear baseline to the research community and assesses its potential for space applications, including out-of-earth manufacturing.


Author(s):  
Francisco Torrens ◽  
Gloria Castellano

High-performance liquid-chromatographic retention times of methylxanthines and cotinine in human plasma and urine are modelled by structure–property relationships. Bioplastic evolution is an evolutionary perspective conjugating the effect of acquired characters, and relations that emerge among the principles of evolutionary indeterminacy, morphological determination and natural selection. It is applied to design co-ordination index, which is used to characterize retentions of methylxanthines, etc. Parameters used to calculate co-ordination index are formation enthalpy, molecular weight and surface area. Morphological and co-ordination indices provide strong correlations. Effect of different types of features like thermodynamic, fractal, etc., are analyzed. The molar formation enthalpy, fractal dimensions, etc. distinguished methylxanthines and cotinine in linear fits. Different behaviour depends on number of C+N+O atoms.


2002 ◽  
Vol 75 (5) ◽  
pp. 853-864 ◽  
Author(s):  
Judit E. Puskas ◽  
Christophe Paulo ◽  
Volker Altstädt

Abstract Structure-property relationships were investigated in hyperbranched polyisobutylenes, in comparison with commercial linear butyl rubber. The gel-free, soluble hyperbranched polyisobutylenes, synthesized by living carbocationic polymerization, had molecular weights, Mw≈400,000 to 1,000,000 g/mol, molecular weight distributions, MWD ≈1.2 to 2.6, and branching frequencies, BR ≈ 4 to 60. The mechanical and viscoelastic characterization of these polymers revealed interesting properties, including the characteristics of crosslinked rubbers.


Sign in / Sign up

Export Citation Format

Share Document