scholarly journals Autophagy Is a Potential Therapeutic Target Against Duck Tembusu Virus Infection in vivo

Author(s):  
Zhiqiang Hu ◽  
Yuhong Pan ◽  
Anchun Cheng ◽  
Xingcui Zhang ◽  
Mingshu Wang ◽  
...  
2021 ◽  
pp. 101636
Author(s):  
Sheng Yang ◽  
Jingxian Wu ◽  
Yufei Huang ◽  
Yafei Zhang ◽  
Yonghong Shi ◽  
...  

2021 ◽  
Vol 12 (10) ◽  
Author(s):  
Xiao-ren Zhu ◽  
Shi-qing Peng ◽  
Le Wang ◽  
Xiao-yu Chen ◽  
Chun-xia Feng ◽  
...  

AbstractPancreatic cancer is the third leading cause of cancer-related mortalities and is characterized by rapid disease progression. Identification of novel therapeutic targets for this devastating disease is important. Phosphoenolpyruvate carboxykinase 1 (PCK1) is the rate-limiting enzyme of gluconeogenesis. The current study tested the expression and potential functions of PCK1 in pancreatic cancer. We show that PCK1 mRNA and protein levels are significantly elevated in human pancreatic cancer tissues and cells. In established and primary pancreatic cancer cells, PCK1 silencing (by shRNA) or CRISPR/Cas9-induced PCK1 knockout potently inhibited cell growth, proliferation, migration and invasion, and induced robust apoptosis activation. Conversely, ectopic overexpression of PCK1 in pancreatic cancer cells accelerated cell proliferation and migration. RNA-seq analyzing of differentially expressed genes (DEGs) in PCK1-silenced pancreatic cancer cells implied that DEGs were enriched in the PI3K-Akt-mTOR cascade. In pancreatic cancer cells, Akt-mTOR activation was largely inhibited by PCK1 shRNA, but was augmented after ectopic PCK1 overexpression. In vivo, the growth of PCK1 shRNA-bearing PANC-1 xenografts was largely inhibited in nude mice. Akt-mTOR activation was suppressed in PCK1 shRNA-expressing PANC-1 xenograft tissues. Collectively, PCK1 is a potential therapeutic target for pancreatic cancer.


2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii46-iii46
Author(s):  
A C Fuentes-Fayos ◽  
M C Vázquez-Borrego ◽  
J M Jiménez-Vacas ◽  
L Bejarano ◽  
C Blanco-Acevedo ◽  
...  

Abstract Glioblastomas (GBMs) remain the deadliest human brain tumors, with poor prognosis despite years of research. Currently, standard therapeutic strategies to treat GBM are not efficient and common survival from diagnosis is ~12–16 months. Thus, identification of new diagnostic/prognostic/therapeutic tools to tackle GBMs is crucial. Emerging evidence indicates that the cellular machinery controlling alternative splicing is altered in tumor pathologies, leading to oncogenic splicing events linked to tumor progression. Accordingly, we aimed to determine the expression pattern of the spliceosome components (SCs) and splicing factors (SFs) in high-grade astrocytomas (HGAs), mostly GBMs, and to ascertain the potential consequences of its dysregulation on GBM development. To this end, expression levels of SCs core and selected SFs were measured using a customized-microfluidic qPCR array in a well-characterized cohort of HGAs (n=33). Our results unveiled a profound alteration in the expression of multiple SCs and SFs in HGAs compared to healthy brain control-samples, wherein levels of particular elements (SRSF3/RBM22/PTBP1/RBM3) enabled perfect discrimination between non-pathological vs. tumor human-tissues, and between proneural and mesenchymal-like GBMs vs. control samples in mouse-models. Results were confirmed in an independent validation-cohort (n=49) and available Microarray dataset (Murat), which revealed that the expression of these splicing elements was correlated with relevant tumor markers and with survival. Remarkably, SRSF3/RBM22/PTBP1/RBM3 silencing (using specific siRNAs) decreased several aggressiveness parameters in vitro (e.g. proliferation, migration, tumorsphere formation, VEGFA secretion, etc.) and induced apoptosis, being SRSF3 the most relevant element affecting these parameters. Hence, a preclinical mouse model (U87MG-xenografts) with SRSF3 silencing drastically decreased in vivo tumor development/progression (i.e. tumor size, %MKI67, mitosis number, etc.) likely through a molecular/cellular mechanism involving the regulation of PDGFRB expression and its associated oncogenic signaling pathways. Overall, our results demonstrate that there is a profound dysregulation of the splicing machinery (spliceosome core and SFs) in HGAs/GBMs, which is directly associated to the development/progression of GBMs. Furthermore, this study reveals that SRSF3 can be a novel biomarker of malignancy and a potential therapeutic target to impair GBMs progression.


Cancers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 587 ◽  
Author(s):  
Matilda Munksgaard Thorén ◽  
Katarzyna Chmielarska Masoumi ◽  
Cecilia Krona ◽  
Xiaoli Huang ◽  
Soumi Kundu ◽  
...  

New, effective treatment strategies for glioblastomas (GBMs), the most malignant and invasive brain tumors in adults, are highly needed. In this study, we investigated the potential of integrin α10β1 as a therapeutic target in GBMs. Expression levels and the role of integrin α10β1 were studied in patient-derived GBM tissues and cell lines. The effect of an antibody–drug conjugate (ADC), an integrin α10 antibody conjugated to saporin, on GBM cells and in a xenograft mouse model was studied. We found that integrin α10β1 was strongly expressed in both GBM tissues and cells, whereas morphologically unaffected brain tissues showed only minor expression. Partial or no overlap was seen with integrins α3, α6, and α7, known to be expressed in GBM. Further analysis of a subpopulation of GBM cells selected for high integrin α10 expression demonstrated increased proliferation and sphere formation. Additionally, siRNA-mediated knockdown of integrin α10 in GBM cells led to decreased migration and increased cell death. Furthermore, the ADC reduced viability and sphere formation of GBM cells and induced cell death both in vitro and in vivo. Our results demonstrate that integrin α10β1 has a functional role in GBM cells and is a novel, potential therapeutic target for the treatment of GBM.


Redox Biology ◽  
2020 ◽  
Vol 36 ◽  
pp. 101652 ◽  
Author(s):  
Xiaoxia Liu ◽  
Yanyu Zhang ◽  
Wenhua Lu ◽  
Yi Han ◽  
Jing Yang ◽  
...  

2010 ◽  
Vol 69 (11) ◽  
pp. 2051-2054 ◽  
Author(s):  
William R Ferrell ◽  
Elizabeth B Kelso ◽  
John C Lockhart ◽  
Robin Plevin ◽  
Iain B McInnes

ObjectiveOsteoarthritis is a global clinical challenge for which no effective disease-modifying agents currently exist. This study identified protease-activated receptor 2 (PAR-2) as a novel pathogenic mechanism and potential therapeutic target in osteoarthritis.MethodsExperimental osteoarthritis was induced in wild-type and PAR-2-deficient mice by sectioning the medial meniscotibial ligament (MMTL), leading to the development of a mild arthropathy. Cartilage degradation and increased subchondral bone formation were assessed as indicators of osteoarthritis pathology.ResultsFour weeks following MMTL section, cartilage erosion and increased subchondral bone formation was evident in wild-type mice but was substantially reduced in PAR-2-deficient mice. Crucially, the therapeutic inhibition of PAR-2 in wild-type mice, using either a PAR-2 antagonist or a monoclonal antibody targeting the protease cleavage site of PAR-2, was also equally effective at reducing osteoarthritis progression in vivo. PAR-2 was upregulated in chondrocytes of wild-type but not sham-operated mice. Wild-type mice showed further joint degradation 8 weeks after the induction of osteoarthritis, but PAR-2-deficient mice were still protected.ConclusionsThe substantial protection from pathology afforded by PAR-2 deficiency following the induction of osteoarthritis provides proof of concept that PAR-2 plays a key role in osteoarthritis and suggests this receptor as a potential therapeutic target.


Viruses ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1377
Author(s):  
Yonggang Pei ◽  
Erle S. Robertson

Epigenetics is a versatile player in manipulating viral infection and a potential therapeutic target for the treatment of viral-induced diseases. Both epigenetics and metabolism are crucial in establishing a highly specific transcriptional network, which may promote or suppress virus infection. Human herpesvirus infection can induce a broad range of human malignancies and is largely dependent on the status of cellular epigenetics as well as its related metabolism. However, the crosstalk between epigenetics and metabolism during herpesvirus infection has not been fully explored. Here, we describe how epigenetic regulation of cellular metabolism affects herpesvirus infection and induces viral diseases. This further highlights the importance of epigenetics and metabolism during viral infection and provides novel insights into the development of targeted therapies.


Sign in / Sign up

Export Citation Format

Share Document