scholarly journals Blood-Brain Barrier Disruption by Lipopolysaccharide and Sepsis-Associated Encephalopathy

Author(s):  
Xiaoyao Peng ◽  
Zhixuan Luo ◽  
Shuang He ◽  
Luhua Zhang ◽  
Ying Li

As a complex multicellular structure of the vascular system at the central nervous system (CNS), the blood-brain barrier (BBB) separates the CNS from the system circulation and regulates the influx and efflux of substances to maintain the steady-state environment of the CNS. Lipopolysaccharide (LPS), the cell wall component of Gram-negative bacteria, can damage the barrier function of BBB and further promote the occurrence and development of sepsis-associated encephalopathy (SAE). Here, we conduct a literature review of the direct and indirect damage mechanisms of LPS to BBB and the relationship between these processes and SAE. We believe that after LPS destroys BBB, a large number of inflammatory factors and neurotoxins will enter and damage the brain tissue, which will activate brain immune cells to mediate inflammatory response and in turn further destroys BBB. This vicious circle will ultimately lead to the progression of SAE. Finally, we present a succinct overview of the treatment of SAE by restoring the BBB barrier function and summarize novel opportunities in controlling the progression of SAE by targeting the BBB.

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Stephanie A. Ihezie ◽  
Iny Elizebeth Mathew ◽  
Devin W. McBride ◽  
Ari Dienel ◽  
Spiros L. Blackburn ◽  
...  

AbstractThe vessels of the central nervous system (CNS) have unique barrier properties. The endothelial cells (ECs) which comprise the CNS vessels contribute to the barrier via strong tight junctions, specific transporters, and limited endocytosis which combine to protect the brain from toxins and maintains brain homeostasis. Blood–brain barrier (BBB) leakage is a serious secondary injury in various CNS disorders like stroke, brain tumors, and neurodegenerative disorders. Currently, there are no drugs or therapeutics available to treat specifically BBB damage after a brain injury. Growing knowledge in the field of epigenetics can enhance the understanding of gene level of the BBB and has great potential for the development of novel therapeutic strategies or targets to repair a disrupted BBB. In this brief review, we summarize the epigenetic mechanisms or regulators that have a protective or disruptive role for components of BBB, along with the promising approaches to regain the integrity of BBB.


2006 ◽  
Vol 22 (4) ◽  
pp. 235-244 ◽  
Author(s):  
Emmanuelle Waubant

Blood-brain barrier (BBB) disruption is one of the hallmarks of multiple sclerosis (MS). It is incompletely understood whether BBB disruption is the initial MS event leading to MS lesion formation or whether it is merely a consequence of cellular infiltration in the central nervous system (CNS). The presence of gadolinium enhancing (Gd+) lesions on serial brain MRI scans is frequently used to evaluate BBB disruption. The presence of Gd enhancement has therefore been used as a reference for most works evaluating promising biomarkers of BBB disruption that are reviewed here. These promising biomarkers include cytokines and chemokines, and their receptors, cell surface markers, and matrix metalloproteinases and their natural inhibitors. At this time, none of these markers have been shown as sensitive as the presence of Gd enhancement to reflect BBB disruption. However, MRI scanning is not only unpractical and expensive; it may also under represent the overall extent of BBB disruption. Developing new MS biomarkers that are sensitive and specific for BBB disruption could 1) improve the monitoring of disease activity; 2) improve the monitoring of response to MS therapies which target BBB disruption; and 3) advance our understanding of dynamic MS processes participating in BBB disruption.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Ting Wu ◽  
Guangjie Chen

Multiple sclerosis is the most common autoimmune disease of the central nervous system. It is believed that the increased migration of autoreactive lymphocytes across the blood-brain barrier (BBB) may be responsible for axonal demyelination of neurons. In this review, we discuss microRNAs participating in the pathological processes of MS, including periphery inflammation, blood-brain barrier disruption, and CNS lesions, and in its therapeutic response, in order to find biomarkers of disease severity and to predict the response to therapy of the diseases.


Therapy ◽  
2006 ◽  
Vol 3 (1) ◽  
pp. 97-112 ◽  
Author(s):  
Rose Marie Tyson ◽  
Dale F Kraemer ◽  
Matthew A Hunt ◽  
Leslie L Muldoon ◽  
Peter Orbay ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document