scholarly journals Stage-Specific Class I Nucleases of Leishmania Play Important Roles in Parasite Infection and Survival

Author(s):  
Anita Leocadio Freitas-Mesquita ◽  
José Roberto Meyer-Fernandes

Protozoans of the genus Leishmania are the causative agents of an important neglected tropical disease referred to as leishmaniasis. During their lifecycle, the parasites can colonize the alimentary tract of the sand fly vector and the parasitophorous vacuole of the mammalian host, differentiating into distinct stages. Motile promastigotes are found in the sand fly vector and are transmitted to the mammalian host during the insect blood meal. Once in the vertebrate host, the parasites differentiate into amastigotes and multiply inside macrophages. To successfully establish infection in mammalian hosts, Leishmania parasites exhibit various strategies to impair the microbicidal power of the host immune system. In this context, stage-specific class I nucleases play different and important roles related to parasite growth, survival and development. Promastigotes express 3’-nucleotidase/nuclease (3’-NT/NU), an ectoenzyme that can promote parasite escape from neutrophil extracellular traps (NET)-mediated death through extracellular DNA hydrolysis and increase Leishmania-macrophage interactions due to extracellular adenosine generation. Amastigotes express secreted nuclease activity during the course of human infection that may be involved in the purine salvage pathway and can mobilize extracellular nucleic acids available far from the parasite. Another nuclease expressed in amastigotes (P4/LmC1N) is located in the endoplasmic reticulum of the parasite and may be involved in mRNA stability and DNA repair. Homologs of this class I nuclease can induce protection against infection by eliciting a T helper 1-like immune response. These immunogenic properties render these nucleases good targets for the development of vaccines against leishmaniasis, mainly because amastigotes are the form responsible for the development and progression of the disease. The present review aims to present and discuss the roles played by different class I nucleases during the Leishmania lifecycle, especially regarding the establishment of mammalian host infection.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Harshini Weerasinghe ◽  
Hayley E. Bugeja ◽  
Alex Andrianopoulos

AbstractMicrobial pathogens have evolved many strategies to evade recognition by the host immune system, including the use of phagocytic cells as a niche within which to proliferate. Dimorphic pathogenic fungi employ an induced morphogenetic transition, switching from multicellular hyphae to unicellular yeast that are more compatible with intracellular growth. A switch to mammalian host body temperature (37 °C) is a key trigger for the dimorphic switch. This study describes a novel gene, msgA, from the dimorphic fungal pathogen Talaromyces marneffei that controls cell morphology in response to host cues rather than temperature. The msgA gene is upregulated during murine macrophage infection, and deletion results in aberrant yeast morphology solely during growth inside macrophages. MsgA contains a Dbl homology domain, and a Bin, Amphiphysin, Rvs (BAR) domain instead of a Plekstrin homology domain typically associated with guanine nucleotide exchange factors (GEFs). The BAR domain is crucial in maintaining yeast morphology and cellular localisation during infection. The data suggests that MsgA does not act as a canonical GEF during macrophage infection and identifies a temperature independent pathway in T. marneffei that controls intracellular yeast morphogenesis.


2007 ◽  
Vol 75 (8) ◽  
pp. 3758-3768 ◽  
Author(s):  
Mehdi Labaied ◽  
Anke Harupa ◽  
Ronald F. Dumpit ◽  
Isabelle Coppens ◽  
Sebastian A. Mikolajczak ◽  
...  

ABSTRACT Malaria infection starts when sporozoites are transmitted to the mammalian host during a mosquito bite. Sporozoites enter the blood circulation, reach the liver, and infect hepatocytes. The formation of a parasitophorous vacuole (PV) establishes their intracellular niche. Recently, two members of the 6-Cys domain protein family, P52 and P36, were each shown to play an important albeit nonessential role in Plasmodium berghei sporozoite infectivity for the rodent host. Here, we generated p52/p36-deficient Plasmodium yoelii parasites by the simultaneous deletion of both genes using a single genetic manipulation. p52/p36-deficient parasites exhibited normal progression through the life cycle during blood-stage infection, transmission to mosquitoes, mosquito-stage development, and sporozoite infection of the salivary glands. p52/p36-deficient sporozoites also showed normal motility and cell traversal activity. However, immunofluorescence analysis and electron microscopic observations revealed that p52/p36-deficient parasites did not form a PV within hepatocytes in vitro and in vivo. The p52/p36-deficient parasites localized as free entities in the host cell cytoplasm or the host cell nucleoplasm and did not develop as liver stages. Consequently, they did not cause blood-stage infections even at high sporozoite inoculation doses. Mice immunized with p52/p36-deficient sporozoites were completely protected against infectious sporozoite challenge. Our results demonstrate for the first time the generation of two-locus gene deletion-attenuated parasites that infect the liver but do not progress to blood-stage infection. The study will critically guide the design of Plasmodium falciparum live attenuated malaria vaccines.


2005 ◽  
Vol 77 (1) ◽  
pp. 77-94 ◽  
Author(s):  
Renato A. Mortara ◽  
Walter K. Andreoli ◽  
Noemi N. Taniwaki ◽  
Adriana B. Fernandes ◽  
Claudio V. da Silva ◽  
...  

Trypanosoma cruzi, the etiological agent of Chagas’ disease, occurs as different strains or isolates that may be grouped in two major phylogenetic lineages: T. cruzi I, associated with the sylvatic cycle and T. cruzi II, linked to the human disease. In the mammalian host the parasite has to invade cells and many studies implicated the flagellated trypomastigotes in this process. Several parasite surface components and some of host cell receptors with which they interact have been identified. Our work focused on how amastigotes, usually found growing in the cytoplasm, can invade mammalian cells with infectivities comparable to that of trypomastigotes. We found differences in cellular responses induced by amastigotes and trypomastigotes regarding cytoskeletal components and actin-rich projections. Extracellularly generated amastigotes of T. cruzi I strains may display greater infectivity than metacyclic trypomastigotes towards cultured cell lines as well as target cells that have modified expression of different classes of cellular components. Cultured host cells harboring the bacterium Coxiella burnetii allowed us to gain new insights into the trafficking properties of the different infective forms of T. cruzi, disclosing unexpected requirements for the parasite to transit between the parasitophorous vacuole to its final destination in the host cell cytoplasm.


2017 ◽  
Vol 1 (12) ◽  
pp. 779-791 ◽  
Author(s):  
Eric J. Vick ◽  
Kruti Patel ◽  
Philippe Prouet ◽  
Mike G. Martin

AbstractHemophagocytic lymphohistiocytosis (HLH) is a syndrome of cytokine-driven immune activation. Cardinal features include fever, hemophagocytosis, hepatosplenomegaly, lymphocytic infiltration, and hypercytokinemia that result in multisystem organ dysfunction and failure. Familial HLH is genetically driven, whereas secondary HLH (SHL) is caused by drugs, autoimmune disease, infection, or cancer. SHL is associated with worse outcomes, with a median overall survival typically of less than 1 year. This reflects difficulty in both diagnostic accuracy and in establishing reliable treatments, especially in cases of malignancy-induced SHL, which have significantly worse outcomes. Malignancy-induced HLH is seen almost exclusively with hematologic malignancies, constituting 97% of cases in the literature over the past 2 years. In these situations, the native immune response driven by CD8 T cells produces an overabundance of T helper 1 cytokines, notably interferon-γ, tumor necrosis factor-α, and interleukin-6, which establish a positive feedback loop of inflammation, enhancing replication of hematologic malignancies while leaving the host immune system in disarray. In this paper, we present 2 case studies of secondary HLH driven by HM, followed by a review of the literature discussing the cytokines driving HLH, diagnostic criteria, and current treatments used or undergoing investigation.


2021 ◽  
Vol 17 (3) ◽  
pp. e1009354
Author(s):  
Monica E. Staniek ◽  
James G. C. Hamilton

Globally visceral leishmaniasis (VL) causes thousands of human deaths every year. In South America, the etiologic agent, Leishmania infantum, is transmitted from an infected canine reservoir to human hosts by the bite of the sand fly vector; predominantly Lutzomyia longipalpis. Previous evidence from model rodent systems have suggested that the odour of infected hosts is altered by the parasite making them more attractive to the vector leading to an increased biting rate and improved transmission prospects for the pathogen. However, there has been no assessment of the effect of Le infantum infection on the attractiveness of dogs, which are the natural reservoirs for human infection. Hair collected from infected and uninfected dogs residing in a VL endemic city in Brazil was entrained to collect the volatile chemical odours present in the headspace. Female and male Lu. longipalpis sand flies were offered a choice of odour entrained from infected and uninfected dogs in a series of behavioural experiments. Odour of uninfected dogs was equally attractive to male or female Lu. longipalpis when compared to a solvent control. Female Lu. longipalpis were significantly more attracted to infected dog odour than uninfected dog odour in all 15 experimental replicates (average 45.7±0.87 females attracted to infected odour; 23.9±0.82 to uninfected odour; paired T-test, P = 0.000). Male Lu. longipalpis did not significantly prefer either infected or uninfected odour (average 36.1±0.4 males to infected odour; 35.7±0.6 to uninfected odour; paired T-test, P = 0.722). A significantly greater proportion of females chose the infected dog odour compared to the males (paired T-test, P = 0.000). The results showed that the odour of dogs infected with Le. infantum was significantly more attractive to blood-seeking female sand flies than it was to male sand flies. This is strong evidence for parasite manipulation of the host odour in a natural transmission system and indicates that infected dogs may have a disproportionate significance in maintaining infection in the canine and human population.


1998 ◽  
Vol 16 (8) ◽  
pp. 753-756 ◽  
Author(s):  
Mariusz Milik ◽  
Dean Sauer ◽  
Anders P. Brunmark ◽  
Lunli Yuan ◽  
Antonella Vitiello ◽  
...  

2019 ◽  
Vol 94 (3) ◽  
Author(s):  
Prerna Dabral ◽  
Jay Babu ◽  
Andrew Zareie ◽  
Subhash C. Verma

ABSTRACT During the latent phase, Kaposi’s sarcoma-associated herpes virus (KSHV) maintains itself inside the host by escaping the host immune surveillance mechanism through restricted protein expression. Latency-associated nuclear antigen (LANA), the most abundantly expressed protein, is essential for viral persistence, as it plays important roles in latent viral DNA replication and efficient segregation of the viral genome to the daughter cells following cell division. KSHV evades immune detection by maintaining the levels of LANA protein below a threshold required for detection by the host immune system but sufficient to maintain the viral genome. LANA achieves this by controlling its expression through regulation of its promoters and by inhibiting its presentation through interaction with the proteins of class I and class II major histocompatibility complex (MHC) pathways. In this study, we identified a mechanism of LANA expression and restricted immune recognition through formation of G-quadruplexes in LANA mRNA. We show that the formation of these stable structures in LANA mRNA inhibits its translation to control antigen presentation, which was supported by treatment of cells with TMPyP4, a G-quadruplex-stabilizing ligand. We identified heterogenous ribonucleoprotein A1 (hnRNP A1) as a G-quadruplex-unwinding helicase, which unfolds these stable secondary structures to regulate LANA translation. IMPORTANCE LANA, the most abundantly expressed protein during latency, is a multifunctional protein which is absolutely required for the persistence of KSHV in the host cell. Even though the functions of LANA in aiding pathogenesis of the virus have been extensively studied, the mechanism of how LANA escapes host’s immune surveillance is not fully understood. This study sheds light on the autoregulatory role of LANA to modulate its expression and immune evasion through formation of G-quadruplexes in its mRNA. We used G-quadruplex-stabilizing ligand to define the inhibition in LANA expression and presentation on the cell surface through MHC class I. We defined the autoregulatory role of LANA and identified a cellular RNA helicase, hnRNP A1, regulating the translation of LANA mRNA. This interaction of hnRNP A1 with LANA mRNA could be exploited for controlling KSHV latency.


2004 ◽  
Vol 10 (5) ◽  
pp. 656-661 ◽  
Author(s):  
Birgitta Rasmusson ◽  
Albert Descoteaux

Promastigotes of the protozoan parasite genusLeishmaniaare inoculated into a mammalian host when an infected sand fly takes a bloodmeal. Following their opsonization by complement, promastigotes are phagocytosed by macrophages. There, promastigotes differentiate into amastigotes, the form of the parasite that replicates in the phagolysosomal compartments of host macrophages. Although the mechanisms by which promastigotes survive the microbicidal consequence of phagocytosis remain, for the most part, to be elucidated, evidence indicates that glycoconjugates play a role in this process. One such glycoconjugate is lipophosphoglycan, an abundant promastigote surface glycolipid. Using quantitative electron and confocal laser scanning microscopy approaches, evidence was provided thatL. donovanipromastigotes inhibit phagolysosome biogenesis in a lipophosphoglycan-dependent manner. This inhibition correlates with an accumulation of periphagosomal F-actin, which may potentially form a physical barrier that preventsL. donovanipromastigote-containing phagosomes from interacting with endocytic vacuoles. Inhibition of phagosome maturation may constitute a strategy to provide an environment propitious to the promastigote-to-amastigote differentiation.


Sign in / Sign up

Export Citation Format

Share Document