scholarly journals Blockade of NaV1.8 Increases the Susceptibility to Ventricular Arrhythmias During Acute Myocardial Infarction

2021 ◽  
Vol 8 ◽  
Author(s):  
Baozhen Qi ◽  
Shimo Dai ◽  
Yu Song ◽  
Dongli Shen ◽  
Fuhai Li ◽  
...  

SCN10A/NaV1.8 may be associated with a lower risk of ventricular fibrillation in the setting of acute myocardial infarction (AMI), but if and by which mechanism NaV1.8 impacts on ventricular electrophysiology is still a matter of debate. The purpose of this study was to elucidate the contribution of NaV1.8 in ganglionated plexi (GP) to ventricular arrhythmias in the AMI model. Twenty beagles were randomized to either the A-803467 group (n = 10) or the control group (n = 10). NaV1.8 blocker (A-803467, 1 μmol/0.5 mL per GP) or DMSO (0.5 mL per GP) was injected into four major GPs. Ventricular effective refractory period, APD90, ventricular fibrillation threshold, and the incidence of ventricular arrhythmias were measured 1 h after left anterior descending coronary artery occlusion. A-803467 significantly shortened ventricular effective refractory period, APD90, and ventricular fibrillation threshold compared to control. In the A-803467 group, the incidence of ventricular arrhythmias was significantly higher compared to control. A-803467 suppressed the slowing of heart rate response to high-frequency electrical stimulation of the anterior right GP, suggesting that A-803467 could inhibit GP activity. SCN10A/NaV1.8 was readily detected in GPs, but was not validated in ventricles by quantitative RT-PCR, western blot and immunohistochemistry. While SCN10A/NaV1.8 is detectible in canine GPs but not in ventricles, blockade of NaV1.8 in GP increases the incidence of ventricular arrhythmias in AMI hearts. Our study shows for the first time an influence of SCN10A/NaV1.8 on the regulation of ventricular arrhythmogenesis via modulating GP activity in the AMI model.

2015 ◽  
Vol 93 (9) ◽  
pp. 773-777 ◽  
Author(s):  
Nikolett Morvay ◽  
István Baczkó ◽  
Anita Sztojkov-Ivanov ◽  
György Falkay ◽  
Julius Gy. Papp ◽  
...  

The aim of this investigation was to compare the effectiveness of long-term pretreatment with amiodarone (AMIO) and its active metabolite desethylamiodarone (DEA) on arrhythmias induced by acute myocardial infarction in rats. Acute myocardial infarction was induced in conscious, male, Sprague–Dawley rats by pulling a previously inserted loose silk loop around the left main coronary artery. Long-term oral pretreatment with AMIO (30 or 100 mg·(kg body mass)−1·day−1, loading dose 100 or 300 mg·kg−1 for 3 days) or DEA (15 or 50 mg·kg−1·day−1, loading dose 100 or 300 mg·kg−1 for 3 days), was applied for 1 month before the coronary artery occlusion. Chronic oral treatment with DEA (50 mg·kg−1·day−1) resulted in a similar myocardial DEA concentration as chronic AMIO treatment (100 mg·kg−1·day−1) in rats (7.4 ± 0.7 μg·g−1 and 8.9 ± 2.2 μg·g−1). Both pretreatments in the larger doses significantly improved the survival rate during the acute phase of experimental myocardial infarction (82% and 64% by AMIO and DEA, respectively, vs. 31% in controls). Our results demonstrate that chronic oral treatment with DEA resulted in similar cardiac tissue levels to that of chronic AMIO treatment, and offered an equivalent degree of antiarrhythmic effect against acute coronary artery ligation induced ventricular arrhythmias in conscious rats.


Circulation ◽  
1969 ◽  
Vol 40 (5s4) ◽  
Author(s):  
DONALD B. HACKEL ◽  
E. HARVEY ESTES ◽  
ABE WALSTON ◽  
STEPHEN KOFF ◽  
EUGENE DAY

2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Irene Cuadrado ◽  
Maria Jose Garcia Miguel ◽  
Irene Herruzo ◽  
Mari Carmen Turpin ◽  
Ana Martin ◽  
...  

Extracellular matrix metalloproteinase inducer EMMPRIN, is highly expressed in patients with acute myocardial infarction (AMI), and induces activation of several matrix metalloproteinases (MMPs), including MMP-9 and MMP-13. To prevent Extracellular matrix degradation and cardiac cell death we targeted EMMPRIN with paramagnetic/fluorescent micellar nanoparticles with an EMMPRIN binding peptide AP9 conjugated (NAP9), or an AP9 scramble peptide as a negative control (NAPSC). NAP9 binds to endogenous EMMPRIN as detected by confocal microscopy of cardiac myocytes and macrophages incubated with NAP and NAPSC in vitro, and in vivo in mouse hearts subjected to left anterior descending coronary artery occlusion (IV injection 50mγ/Kg NAP9 or NAP9SC). Administration of NAP9 at the same time or 1 hour after AMI reduced infarct size over a 20% respect to untreated and NAPSC injected mice, recovered left ventricle ejection fraction (LVEF) similar to healthy controls, and reduced EMMPRIN downstream MMP9 expression. In magnetic resonance scans of mouse hearts 2 days after AMI and injected with NAP9, we detected a significant gadolinium enhancement in the left ventricle respect to non-injected mice and to mice injected with NAPSC. Late gadolinium enhancement assays exhibited NAP9-mediated left ventricle signal enhancement as early as 30 minutes after nanoprobe injection, in which a close correlation between the MRI signal enhancement and left ventricle infarct size was detected. Taken together, these results point EMMPRIN targeted nanoprobes as a new tool for the treatment of AMI.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kwanghyun Sohn ◽  
Steven P. Dalvin ◽  
Faisal M. Merchant ◽  
Kanchan Kulkarni ◽  
Furrukh Sana ◽  
...  

Abstract Repolarization alternans (RA) has been implicated in the pathogenesis of ventricular arrhythmias and sudden cardiac death. We developed a 12-lead, blue-tooth/Smart-Phone (Android) based electrocardiogram (ECG) acquisition and monitoring system (cvrPhone), and an application to estimate RA, in real-time. In in-vivo swine studies (N = 17), 12-lead ECG signals were recorded at baseline and following coronary artery occlusion. RA was estimated using the Fast Fourier Transform (FFT) method using a custom developed algorithm in JAVA. Underlying ischemia was detected using a custom developed ischemic index. RA from each lead showed a significant (p < 0.05) increase within 1 min of occlusion compared to baseline (n = 29). Following myocardial infarction, spontaneous ventricular tachycardia episodes (n = 4) were preceded by significant (p < 0.05) increase of RA prior to the onset of the tachy-arrhythmias. Similarly, the ischemic index exhibited a significant increase following myocardial infarction (p < 0.05) and preceding a tachy-arrhythmic event. In conclusion, RA can be effectively estimated using surface lead electrocardiograms by analyzing beat-to-beat variability in ECG morphology using a smartphone based platform. cvrPhone can be used to detect myocardial ischemia and arrhythmia susceptibility using a user-friendly, clinically acceptable, mobile platform.


Sign in / Sign up

Export Citation Format

Share Document