scholarly journals Anthropogenic Noise and Its Footprint on ELF Schumann Resonance Recordings

2021 ◽  
Vol 9 ◽  
Author(s):  
V. Tritakis ◽  
I. Contopoulos ◽  
C. Florios ◽  
G. Tatsis ◽  
V. Christofilakis ◽  
...  

A set of various short artificial disturbances from rifle firings, car engine operation, car radio, shakings of the apparatus, etc., were generated deliberately near our ELF recording stations in order to identify their footprint on the recordings of atmospheric electromagnetic radiation in the Schumann resonance (SR) band (from about 2–50 Hz). Such disturbances simulate anthropogenic noises from hunters, hikers, campers, etc., which may occur in a remote-isolated ELF recording station. We expect that our work will assist fellow scientists to differentiate between artificial signals created from anthropogenic activity and real signals attributable to geophysical phenomena.

2019 ◽  
Vol 127 ◽  
pp. 03006
Author(s):  
Yiyang Luo ◽  
Nguyen Xuan An ◽  
Vladislav Lutsenko ◽  
Vladimir Uvarov

To study the electromagnetic radiation of the lithosphere associated with seismic waves, we used the recordings of the natural electromagnetic radiation obtained under conditions of weak industrial noise and a high level of microseismicity in the ELF-VLF wave bands. It is shown that these data contain information about the surface waves of the Earth’s crust and are accompanied by a frequency close to the first harmonic of the Schumann resonance. The distribution of spikes over thresholds is obtained, which can be indicators of the activity in the processes of the Earth’s crust. The averaged form of the spikes for different components of the electromagnetic field is obtained. Attention is drawn to the differences in the various components of the electromagnetic field and their diurnal differences are analyzed. The possibility of using the approach to predict the short-term movement of the Earth’s crust is considered.


2020 ◽  
Author(s):  
Karolina Szabóné André ◽  
József Bór ◽  
Gabriella Sátori ◽  
Tamás Bozóki ◽  
Péter Steinbach

<p>Measured time series of the extremely low frequency (ELF, 3 Hz-3 kHz) band electromagnetic field can be considered as a superposition of background and transient signals. Transient signals produced by exceptionally powerful lightning strokes far from the recording station are named Q-bursts. The direction of the source lightning stroke at the recording station can be calculated using the horizontal components of the Poynting vector. The source lightning stroke can be identified in the lightning database of the World Wide Lightning Location Network (WWLLN, wwlln.net) by the matching detection time and direction calculated from ELF measurements.</p><p>Schumann resonance (SR) peaks appear at ~8Hz, ~14Hz, ~20 Hz, etc., in the spectra computed from the background ELF timeseries. SRs are natural electromagnetic resonances with wavelengths comparable to the circumference of the Earth-ionosphere waveguide. Peak amplitudes and frequencies in the resonance spectrum detected in the ELF band at any given location on the Earth depend on the distribution and intensity of the global lightning activity which excites SR.</p><p>ELF measurements are routinely performed in the Széchenyi István Geophysical Observatory (NCK, 47°38' N, 16°43' E) near Nagycenk, Hungary. Vertical electric and the horizontal magnetic components of the atmospheric electromagnetic field are monitored by the Schumann resonance recording system. In this work, we study the variation of the number of lightning strokes with high charge moment change (CMC; indicated by the number of large amplitude Q-bursts recorded at NCK) and the variation of the number of lightning strokes with large peak current (indicated by the number of WWLLN-detected energetic lightning strokes). In addition to considering the total number of WWLLN-detected lightning strokes and Q-bursts, we analyze lightning strokes occurring  only in west, south, east, and north directions from NCK, corresponding predominantly to the three main lightning producing regions of the tropical lands in America, Africa, and Indonesia as well as to the Pacific Ocean. Time variations of the number of high CMC and large peak current lightning strokes during November, 2014 are compared with time variation of the cumulative SR intensity detected at NCK station in the vertical electric field component in the same month. Similarities and differences in the time variations of the considered quantities are discussed in order to show how these indicators mirror the changing distributions of the global lightning activity.</p>


2017 ◽  
Vol 3 (4) ◽  
pp. 64-68
Author(s):  
V. A. Bannyi ◽  
A. I. Savitsky ◽  
L. I. Kramoreva ◽  
E. S. Petrova ◽  
D. B. Kulikovich ◽  
...  

2019 ◽  
Vol 6 (2) ◽  
pp. 101-137
Author(s):  
RUSTAM KHAKIMOVICH RAKHIMOV

The article presents the main basic laws of nature and modern theories of the nature of electromagnetic radiation, its generation, characteristics, and laws of reflection, absorption and scattering of light. The principle of transformation of the radiation spectrum of the primary source using the developed ceramic materials are shown, as well as experimental results of the interaction of IR radiation with matter and various mechanisms of influence on various objects and processes are described.


Sign in / Sign up

Export Citation Format

Share Document