scholarly journals Elevation of the Gangdese Mountains and Their Impacts on Asian Climate During the Late Cretaceous—a Modeling Study

2021 ◽  
Vol 9 ◽  
Author(s):  
Jian Zhang ◽  
Yonggang Liu ◽  
Xiaomin Fang ◽  
Tao Zhang ◽  
Chenguang Zhu ◽  
...  

Uplift of the Gangdese Mountains is important to the evolution of Asian monsoons and the formation of Tibetan Plateau, but its paleoaltitude before the India-Asia collision (Late Cretaceous) is less constrained so far. In this study, we investigate whether the geological records, which are indicators of soil dryness, discovered in East Asia can provide such a constraint. Through climate modeling using the Community Earth System Model version 1.2.2, it is found that the extent of dry land in East Asia is sensitive to the altitude of the Gangdese Mountains. It expands eastwards and southwards with the rise of the mountain range. Comparison of the model results with all the available geological records in this region suggests that the Gangdese Mountains had attained a height of ∼2 km in the Late Cretaceous.

2021 ◽  
Author(s):  
Jian Zhang ◽  
Yonggang Liu ◽  
Xiaomin Fang ◽  
Tao Zhang ◽  
Chenguang Zhu ◽  
...  

<p>The Tibetan Plateau has a significant impact on the Asian climate due to its high topography. However, its uplift history, especially the uplift of the Gangdese Mountains in its early stage, is under intense debate. Most quantitative reconstructions are done for the Cenozoic only, impeding our understanding of the geodynamic and paleoenvironmental evolution during the Cretaceous. How high would the Gangdese Mountains be then, and what effects would they have on Asian climate? In order to explore these two questions, here we model the impacts of the Gangdese Mountains on the Asian climate during the Late Cretaceous by employing the Community Earth System Model version 1.2.2. It is found that the extent of dry land in East Asia is sensitive to the altitude of the Gangdese Mountains; it expands eastwards and southwards with the rise of the mountain range, which is due to the fact that the Gangdese Mountains can significantly reduce the precipitation over the low- to mid-latitude Asia. We then attempt to constrain their paleoaltitude using the available climate indicators in the sediments. The aridity index is further calculated for this region, and its comparison with the climate records suggests that Gangdese Mountains should be higher than 1 km but lower than 3 km during the Late Cretaceous, most likely ~2 km.</p>


2018 ◽  
Vol 10 (6) ◽  
pp. 1245-1265 ◽  
Author(s):  
A. Gettelman ◽  
P. Callaghan ◽  
V. E. Larson ◽  
C. M. Zarzycki ◽  
J. T. Bacmeister ◽  
...  

2018 ◽  
Vol 11 (10) ◽  
pp. 4155-4174 ◽  
Author(s):  
Benjamin Brown-Steiner ◽  
Noelle E. Selin ◽  
Ronald Prinn ◽  
Simone Tilmes ◽  
Louisa Emmons ◽  
...  

Abstract. While state-of-the-art complex chemical mechanisms expand our understanding of atmospheric chemistry, their sheer size and computational requirements often limit simulations to short lengths or ensembles to only a few members. Here we present and compare three 25-year present-day offline simulations with chemical mechanisms of different levels of complexity using the Community Earth System Model (CESM) Version 1.2 CAM-chem (CAM4): the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4) mechanism, the Reduced Hydrocarbon mechanism, and the Super-Fast mechanism. We show that, for most regions and time periods, differences in simulated ozone chemistry between these three mechanisms are smaller than the model–observation differences themselves. The MOZART-4 mechanism and the Reduced Hydrocarbon are in close agreement in their representation of ozone throughout the troposphere during all time periods (annual, seasonal, and diurnal). While the Super-Fast mechanism tends to have higher simulated ozone variability and differs from the MOZART-4 mechanism over regions of high biogenic emissions, it is surprisingly capable of simulating ozone adequately given its simplicity. We explore the trade-offs between chemical mechanism complexity and computational cost by identifying regions where the simpler mechanisms are comparable to the MOZART-4 mechanism and regions where they are not. The Super-Fast mechanism is 3 times as fast as the MOZART-4 mechanism, which allows for longer simulations or ensembles with more members that may not be feasible with the MOZART-4 mechanism given limited computational resources.


2015 ◽  
Author(s):  
Xubin Zeng ◽  
◽  
Peter Troch ◽  
Jon Pelletier ◽  
Guo-Yue Niu ◽  
...  

Eos ◽  
2019 ◽  
Vol 100 ◽  
Author(s):  
David Shultz

A pair of revisions to the Energy Exascale Earth System Model improves its ability to capture late afternoon and nocturnal rainfall as well as the timing and movement of convection.


2012 ◽  
Vol 9 (11) ◽  
pp. 16753-16814 ◽  
Author(s):  
F. Li ◽  
S. Levis ◽  
D. S. Ward

Abstract. Modeling fire as an integral part of an Earth system model (ESM) is vital for quantifying and understanding fire-climate-vegetation interactions on a global scale and from an Earth system perspective. In this study, we introduce to the Community Earth System Model (CESM) the new global fire parameterization proposed by Li et al. (2012), now with a more realistic representation of the anthropogenic impacts on fires, with a parameterization of peat fires, and with other minor modifications. The improved representation of the anthropogenic dimension includes the first attempt to parameterize agricultural fires, the economic influence on fire occurrence, and the socioeconomic influence on fire spread in a global fire model; also an alternative scheme for deforestation fires. The global fire parameterization has been tested in CESM1's land component model CLM4 in a 1850–2004 transient simulation, and evaluated against the satellite-based Global Fire Emission Database version 3 (GFED3) for 1997–2004. The simulated 1997–2004 average global totals for the burned area and fire carbon emissions in the new fire scheme are 338 Mha yr−1 and 2.1 Pg C yr−1. Its simulations on multi-year average burned area, fire seasonality, fire interannual variability, and fire carbon emissions are reasonable, and show better agreement with GFED3 than the current fire scheme in CESM1 and modified CTEM-FIRE. Moreover, the new fire scheme also estimates the contributions of global fire carbon emissions from different sources. During 1997–2004, the contributions are 8% from agricultural biomass burning, 27% from tropical deforestation and degradation fires, 5% from global peat fires (3.7% from tropical peat fires), and 60% from other fires, which are close to previous assessments based on satellite data, government statistics, or other information sources. In addition, we investigate the importance of direct anthropogenic influence (anthropogenic ignitions and fire suppression) on global fire regimes during 1850–2004, using CESM1 with the new fire scheme. Results show that the direct anthropogenic impact is the main factor driving the trends of global burned area in the whole period and fire carbon emissions only before ~ 1870.


Sign in / Sign up

Export Citation Format

Share Document