scholarly journals An Adaptive Sliding Mode Control Based on Disturbance Observer for LFC

2021 ◽  
Vol 9 ◽  
Author(s):  
Mofan Wei ◽  
Sheng Lin ◽  
Yan Zhao ◽  
Hao Wang ◽  
Qian Liu

In the power system, the loads and nonlinearity parameters cause the system frequency deviation, which complicates the load frequency control (LFC). To deal with the above problem, an adaptive sliding mode control (SMC) based on disturbance observer is proposed to eliminate frequency deviation for interconnected power system in this paper. Firstly, the mathematical model of the power system is established, where the power exchange between the tie line is considered as the variable of the designed sliding surface. Secondly, the nonlinear disturbance observer is constructed to estimate the parameter uncertainty and load of power system. Thirdly, combined with the estimated value of the disturbance observer and integral sliding mode surface, the SMC is designed. Moreover, considering the inherent shortcoming of SMC—the chattering problem, an adaptive strategy is applied to the SMC to ensure the stability of controller. Next, the stability of the designed SMC is proved by Lyapunov stability theory. Finally, to verify the effectiveness of the proposed controller, several simulations are presented.

2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Jiangbin Wang ◽  
Ling Liu ◽  
Chongxin Liu ◽  
Xiaoteng Li

The main purpose of the paper is to control chaotic oscillation in a complex seven-dimensional power system model. Firstly, in view that there are many assumptions in the design process of existing adaptive controllers, an adaptive sliding mode control scheme is proposed for the controlled system based on equivalence principle by combining fixed-time control and adaptive control with sliding mode control. The prominent advantage of the proposed adaptive sliding mode control scheme lies in that its design process breaks through many existing assumption conditions. Then, chaotic oscillation behavior of a seven-dimensional power system is analyzed by using bifurcation and phase diagrams, and the proposed strategy is adopted to control chaotic oscillation in the power system. Finally, the effectiveness and robustness of the designed adaptive sliding mode chaos controllers are verified by simulation.


2011 ◽  
Vol 14 (4) ◽  
pp. 92-105
Author(s):  
Hai Thanh Nguyen ◽  
Nghia Hoai Duong ◽  
Chuyen Quang Lam

The adaptive sliding mode control for civil structures using Magnetorheological (MR) dampers is proposed for reducing the vibration of the building in this paper. Firstly, the indirect sliding mode control of the structures using these MR dampers is designed. Therefore, in order to solve the nonlinear problem generated by the indirect control, an adaptive law for sliding mode control (SMC) is applied to take into account the controller robustness. Secondly, the adaptive SMC is calculated for the stability of the system based on the Lyapunov theory. Finally, simulation results are shown to demonstrate the effectiveness of the proposed controller.


Sign in / Sign up

Export Citation Format

Share Document