scholarly journals Optimal Operation of a Hydrogen Storage and Fuel Cell Coupled Integrated Energy System

2021 ◽  
Vol 13 (6) ◽  
pp. 3525
Author(s):  
Oscar Utomo ◽  
Muditha Abeysekera ◽  
Carlos E. Ugalde-Loo

Integrated energy systems have become an area of interest as with growing energy demand globally, means of producing sustainable energy from flexible sources is key to meet future energy demands while keeping carbon emissions low. Hydrogen is a potential solution for providing flexibility in the future energy mix as it does not emit harmful gases when used as an energy source. In this paper, an integrated energy system including hydrogen as an energy vector and hydrogen storage is studied. The system is used to assess the behaviour of a hydrogen production and storage system under different renewable energy generation profiles. Two case studies are considered: a high renewable energy generation scenario and a low renewable energy generation scenario. These provide an understanding of how different levels of renewable penetration may affect the operation of an electrolyser and a fuel cell against an electricity import/export pricing regime. The mathematical model of the system under study is represented using the energy hub approach, with system optimisation through linear programming conducted via MATLAB to minimise the total operational cost. The work undertaken showcases the unique interactions the fuel cell has with the hydrogen storage system in terms of minimising grid electricity import and exporting stored hydrogen as electricity back to the grid when export prices are competitive.

2020 ◽  
Vol 165 ◽  
pp. 01013
Author(s):  
Linfeng Wang ◽  
Kai Zhang ◽  
Nan Xu ◽  
Jingyan Wang ◽  
Danyang Zhang ◽  
...  

With the depletion of fossil energy and the popularity of renewable energy, a comprehensive energy system with the goal of improving system energy efficiency and consuming renewable energy is booming. Based on the combined heat, power, and heat generation, this paper builds a comprehensive energy system operation optimization model in conjunction with ground source heat pumps. It aims to find the optimal operation strategy based on the actual situation of the park’s load, equipment capacity, and energy prices. Using the linear programming method, a mathematical model with the best economic efficiency of the integrated energy system is established, the optimal operation strategy for a typical day is analyzed, and the annual operation is simulated. Finally, it compares with conventional energy supply methods and analyzes the contribution to the consumption of renewable energy.


2012 ◽  
Vol 462 ◽  
pp. 225-232 ◽  
Author(s):  
Rui Cao ◽  
Zi Long Yang

Today,there is a continuous need for more clean energy, this need has facilitated the increasing of distributed generation technology and renewable energy generation technology. In order to ensure the supply of renewable energy generation continuously and smoothly in distributed power generation system, need to configure a amount of energy storage system for storing excess power generated. This article outlines some energy storage technologies which are used in power systems in the current and future, summarizes the working principles and features of several storage units, provides the basis for the design of energy storage system.


2021 ◽  
Vol 9 ◽  
Author(s):  
Peng Li ◽  
Fan Zhang ◽  
Xiyuan Ma ◽  
Senjing Yao ◽  
Zhuolin Zhong ◽  
...  

The park integrated energy system (PIES) plays an important role in realizing sustainable energy development and carbon neutral. Furthermore, its optimization dispatch can improve the energy utilization efficiency and reduce energy systems operation cost. However, the randomness and volatility of renewable energy and the instability of load all bring challenges to its optimal operation. An optimal dispatch framework of PIES is proposed, which constructs the operation models under three different time scales, including day-ahead, intra-day and real-time. Demand response is also divided into three levels considering its response characteristics and cost composition under different time scales. The example analysis shows that the multi-time scale optimization dispatch model can not only meet the supply and demand balance of PIES, diminish the fluctuation of renewable energy and flatten load curves, but also reduce the operation cost and improve the reliability of energy systems.


2018 ◽  
Vol 64 ◽  
pp. 01003
Author(s):  
Thom Leholo Sempe ◽  
Adewale Owolawi Pius ◽  
Timothy Akindeji Kayode

The integration of hybridized renewable energy sources (RES) with AC/DC converters has become the focus of the 21st century for green Information Communication Technology (ICT) applications such as the data center. As the data traffic grows exponentially, the corresponding demand for energy to drive the growth becomes a great challenge and considering the environmental impact, a hybrid renewable energy system is favored for eco-sustainability and economic reasons. This is especially true for data centers which represent a dominant share of the total power in cellular networks. This paper evaluates the actual performance of a fuel cell in a renewable energy hybrid system considering the hybridization of photovoltaic (PV), Wind, Fuel Cell, and battery storage system with a choice of a half-grid mode. The reduction and the absence of available PV power by shading and rainy conditions will be easily reduced by the compensation of the other renewable sources. The modeling and simulations are performed using HOMER software. The results show the effectiveness of the proposed system as the energy supply is less intermittent and more stable.


Author(s):  
SRI UTAMI

ABSTRAKAndil pariwisata terhadap perkembangan regional sangat besar begitu juga andilnya terhadap permasalahan lingkungan. Untuk mengurangi aspek negatif terhadap lingkungan serta meningkatkan penghematan, sistem energi terbarukan menempati prioritas penting dalam bidang pariwisata. Konfigurasi optimal sistem energi terbarukan direncanakan menggunakan Algoritma Genetika. Penelitian ini dilakukan untuk mengoptimasi sistem energi terbarukan di Parangtritis, Kretek, Bantul, Jawa Tengah. Sistem yang dirancang terdiri dari sel surya dan turbin angin, sedangkan sistem penyimpanannya menggunakan baterai dan fuel cell. Algoritma ini meminimisasi fungsi objektif biaya total yang terdiri dari biaya investasi, biaya penggantian serta biaya operasi dan perawatan. Kehandalan sistem dievaluasi menggunakan indeks Equivalent Loss Factor (). Indeks ini memberikan informasi jumlah energi yang tidak dapat dipasok oleh sistem energi terbarukan. Hasil simulasi memperlihatkan jumlah optimal sistem energi terbarukan dicapai dengan jumlah sel surya sebanyak 3, baterai 48,turbin angin sebanyak 36, elektroliser sebanyak 3, tangki hidrogen 2 dan fuel cell sebanyak 8. Nilai ELF yang digunakan dalam penelitian ini adalah 0.01.ABSTRACTTourism has a massive contribution to regional development and shares environmental issues. Reducing reliances on fossil fuel, it is not still adequating energy consumption yet to cause development of renewable energy in crucial position for tourism desicition. An optimal configuration of renewable energy system was planned by Genetic Algorithm in this work. This research conducted to optimize renewable  energy system in Parangtritis, Kretek, Bantul Central Java. The system consisted of solar cells and wind turbines, and the batteries and fuel cells were as storage system. The algorithm minimize objective function of total cost consisted of investment, replacement as well as operating and maintenance costs. A reability evaluation of the system was given by Equivalent Loss Factor (). This index inform an insufficient energy in the systems. The simulation showed an optimum size of the system, achieved by size of PV, battery, wind turbine, electrolizer, hidrogen tank and fuel cell were  3, 48, 36, 3, 2, 8 respectively. The ELF used in this simulation was 0.01. Keywords: fossil fuel,  renewable energy, tourism, Equivalent Lost Factor 


Sign in / Sign up

Export Citation Format

Share Document