scholarly journals Stochastic Time-Varying Model Predictive Control for Trajectory Tracking of a Wheeled Mobile Robot

2021 ◽  
Vol 9 ◽  
Author(s):  
Weijiang Zheng ◽  
Bing Zhu

In this paper, a stochastic model predictive control (MPC) is proposed for the wheeled mobile robot to track a reference trajectory within a finite task horizon. The wheeled mobile robot is supposed to subject to additive stochastic disturbance with known probability distribution. It is also supposed that the mobile robot is subject to soft probability constraints on states and control inputs. The nonlinear mobile robot model is linearized and discretized into a discrete linear time-varying model, such that the linear time-varying MPC can be applied to forecast and control its future behavior. In the proposed stochastic MPC, the cost function is designed to penalize its tracking error and energy consumption. Based on quantile techniques, a learning-based approach is applied to transform the probability constraints to deterministic constraints, and to calculate the terminal constraint to guarantee recursive feasibility. It is proved that, with the proposed stochastic MPC, the tracking error of the closed-loop system is asymptotically average bounded. A simulation example is provided to support the theoretical result.

2018 ◽  
Vol 75 (1/2/3/4) ◽  
pp. 1
Author(s):  
Charles Pinto ◽  
Ione Nieva ◽  
Sara Mata ◽  
Itziar Cabanes ◽  
Asier Zubizarreta

2017 ◽  
Vol 40 (13) ◽  
pp. 3834-3845 ◽  
Author(s):  
Yan Geng ◽  
Xiaoe Ruan

In this paper, an interactive iterative learning identification and control (ILIC) scheme is developed for a class of discrete-time linear time-varying systems with unknown parameters and stochastic noise to implement point-to-point tracking. The identification is to iteratively estimate the unknown system parameter matrix by adopting the gradient-type technique for minimizing the distance of the system output from the estimated system output, whilst the control law is to iteratively upgrade the current control input with the current point-to-point tracking error scaled by the estimated system parameter matrix. Thus, the iterative learning identification and the iterative learning control are scheduled in an interactive mode. By means of norm theory, the boundedness of the discrepancy between the system matrix estimation and the real one is derived, whilst, by the manner of the statistical technique, it is conducted that the mathematical expectation of the tracking error monotonically converges to nullity and the variance of the tracking error is bounded. Numerical simulations exhibit the validity and effectiveness of the proposed ILIC scheme.


Sign in / Sign up

Export Citation Format

Share Document