scholarly journals Preparation and Characterization of Cellulose Nanocrystal Extraction From Pennisetum hydridum Fertilized by Municipal Sewage Sludge via Sulfuric Acid Hydrolysis

2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaoshan Yu ◽  
Yu Jiang ◽  
Qitang Wu ◽  
Zebin Wei ◽  
Xianke Lin ◽  
...  

This research focuses on the preparation of cellulose nanocrystals (CNCs) from Pennisetum hydridum fertilized by municipal sewage sludge (MSS) through sulfuric acid hydrolysis in different acid concentrations (40–65%), temperature (room temperature ∼55°C), and reaction time (50–120 min). The results showed that the obtained CNC possessed stable dispersion in water. The length of CNCs reached 272.5 nm under the condition of room temperature (RT), 65% acid concentration, and 120 min reaction time, and the diameter was within 10 nm. Furthermore, Fourier transform infrared (FTIR) showed that the CNC still kept the cellulose type I structure. The crystallinity of CNCs increased to the maximum by 18.34% compared with that of delignified Pennisetum hydridum fibers. Thermogravimetry (TG) illustrated the thermal stability of CNCs was lower than that of delignified Pennisetum hydridum fibers due to the introduction of sulfate groups in the cellulose. This study demonstrated that Pennisetum hydridum fertilized by MSS might be a suitable raw material for CNCs. This implies meaningful resource utilization of MSS and Pennisetum hydridum.

2017 ◽  
Vol 24 (36) ◽  
pp. 27862-27869 ◽  
Author(s):  
Minrui Huang ◽  
Huajun Feng ◽  
Na Li ◽  
Dongsheng Shen ◽  
Yuyang Zhou ◽  
...  

Resources ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 131
Author(s):  
Monika Kasina ◽  
Piotr Rafał Kowalski ◽  
Bartłomiej Kajdas ◽  
Marek Michalik

Due to the increasing amount of produced and accumulated wastes, a potential source of elements might be the global waste stream coming from the waste incineration process. As a result of this process, bottom ash, fly ash and air pollution control residues are produced. The goal of this study was to evaluate the raw material potential of the anthropogenic materials which are fly ashes from municipal waste incineration and municipal sewage sludge incineration, and the possibility for the recovery of metallic or other economically valuable elements by comparison of their chemical composition with the chemical composition of Earth materials (ultramafic, mafic and felsic igneous rocks, various sedimentary rocks), and with their lowest content in currently exploited ores. Fly ashes contain more valuable and critical elements when compared to Earth materials; however, they are less concentrated in comparison to the content in currently exploited ores. Since natural resources are becoming depleted, the costs of exploitation, mineral processing and related operations are increasing and the fly ashes are easily accessible. Cheap materials do not demand complicated treatment which might be considered as a future source of P, Zn, Sn, Cr, Pb, Au and Ag, and thus fulfilling the assumptions of close-loop economy and to maximize natural resources protection.


2016 ◽  
Vol 16 (1) ◽  
pp. 38
Author(s):  
Bharathi P. ◽  
Pennarsi M.

In this investigation, municipal sewage sludge was used as a lipid feedstock. Two stage extraction processes was developed to obtain good yield of lipid content. The maximum lipid yields 32.5% was achieved from chloroform: methanol solvents through optimum conditions of 2:1 ratio, 50oC temp for 30 min. The lipid content was characterized by TLC analysis. The lipid properties were analyzed and proved as a lipid. Hence, municipal sewage sludge serves as a valuable raw material for lipid production


2016 ◽  
Vol 85 ◽  
pp. 363-370 ◽  
Author(s):  
Barbara Kołodziej ◽  
Magdalena Stachyra ◽  
Jacek Antonkiewicz ◽  
Elżbieta Bielińska ◽  
Janusz Wiśniewski

Agronomie ◽  
2001 ◽  
Vol 21 (2) ◽  
pp. 169-178 ◽  
Author(s):  
Giovanni Gigliotti ◽  
Pier Lodovico Giusquiani ◽  
Daniela Businelli

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3106
Author(s):  
Tomasz Kalak ◽  
Kinga Marciszewicz ◽  
Joanna Piepiórka-Stepuk

Recently, more and more attention has been paid to the removal of nickel ions due to their negative effects on the environment and human health. In this research, fly ash obtained as a result of incineration of municipal sewage sludge with the use of circulating fluidized bed combustion (CFBC) technology was used to analyze the possibility of removing Ni(II) ions in adsorption processes. The properties of the material were determined using analytical methods, such as SEM-EDS, XRD, BET, BJH, thermogravimetry, zeta potential, SEM, and FT-IR. Several factors were analyzed, such as adsorbent dose, initial pH, initial concentration, and contact time. As a result of the conducted research, the maximum sorption efficiency was obtained at the level of 99.9%. The kinetics analysis and isotherms showed that the pseudo-second order equation model and the Freundlich isotherm model best suited this process. In conclusion, sewage sludge fly ash may be a suitable material for the effective removal of nickel from wastewater and the improvement of water quality. This research is in line with current trends in the concepts of circular economy and sustainable development.


2014 ◽  
Vol 665 ◽  
pp. 404-407 ◽  
Author(s):  
Wan Yu ◽  
Pei Sheng Li

Moisture distribution in sewage sludge was considered as the essential of thermal drying. Some methods were given in literatures to test the moisture distribution, but there was no standard method to determine the critical water content between different kinds of water. The municipal sewage sludge was dried by hot air in this work. Based on the drying curve, the derivative of drying rate with respect to dry basis moisture content was brought out to analyze the moisture distribution in sewage sludge. Results show that this method can easily determine the free water, interstitial water, surface water and bound water with a high accuracy. The present work can provide new insight to determine the moisture distribution in sewage sludge, which was still lacking in the literatures.


Sign in / Sign up

Export Citation Format

Share Document