scholarly journals Land Use and Cover Change in the Industrial Era: A Spatial Analysis of Alpine River Catchments and Fluvial Corridors

2021 ◽  
Vol 9 ◽  
Author(s):  
Severin Hohensinner ◽  
Ulrike Atzler ◽  
Monika Berger ◽  
Thomas Bozzetta ◽  
Christian Höberth ◽  
...  

Land uses affect flood risks in various ways. The comparative analysis of the historical and current land cover/uses helps to better understand changing flood regimes. Based on historical cadastre maps from 1826 to 1859, the land cover/uses in the Austrian catchments of the rivers Rhine, Salzach and Drava were reconstructed to almost the level of exact plots of land. Catchment-wide analysis reveals a six-fold expansion of settlement areas, a decline of arable land by 69% and a shrinking of the formerly glaciated areas by 73% until 2016. In the Alpine fluvial corridors, i.e. flood-prone areas at the valley floors and valley sides at ca. 300-year floods, settlements even expanded 7.5-fold, severely increasing the potential for flood damages. At the same time, the overall channel area of running waters has been reduced by 40% and 95% the formerly large wetlands have been lost. Overall, the fluvial corridors were truncated by 203 km2 or 14%, thereby reducing flood retention capacity. The concentration of intensive forms of human land uses at lower altitudes, coupled with an upward shift of less intensively used, near-natural forms of land cover, has led to a both spatial and vertical separation of Alpine landscape features over the long term. Warmer temperatures due to climate change are expected to promote the demonstrated upward shifts of Alpine vegetation.

2019 ◽  
Vol 28 (1) ◽  
Author(s):  
Asta Kazlauskaite-Jadzevice ◽  
Liudmila Tripolskaja ◽  
Jonas Volungevicius ◽  
Eugenija Baksiene

Conversion of arable soils into other land uses can stabilize and increase accumulation of soil organic carbon (SOC) and in addition prevent deterioration in its properties. The data has shown changes in SOC sequestration in Ap horizon after arable land conversion (1995–2015) into managed grassland, abandoned and pine afforested. SOC in Arenosol topsoil was positively affected by long term fallow and conversion into grassland. Abandoned land and fertilised managed grassland accumulated significantly more SOC, 48% and 38% respectively compared with arable land. In unfertilised managed grassland SOC stocks decreased 2.3% during 21 years, but losses were lower than in fertilised arable land. Pine afforestation of loamy sand helped to reduce the intensity of SOM mineralization compared to arable land. The Ap horizon thickness in pine forest soil increased from 28 to 31 cm during 21 years period. However, SOC stock decreased by 1% due to reduction in carbon concentration.


2018 ◽  
Vol 10 (11) ◽  
pp. 3940 ◽  
Author(s):  
Yuanyuan Yang ◽  
Shuwen Zhang

Long-term land changes are cumulatively a major driver of global environmental change. Historical land-cover/use change is important for assessing present landscape conditions and researching ecological environment issues, especially in eco-fragile areas. Arable land is one of the land types influenced by human agricultural activity, reflecting human effects on land-use and land-cover change. This paper selected Zhenlai County, which is part of the farming–pastoral zone of northern China, as the research region. As agricultural land transformation goes with the establishment of settlements, in this research, the historical progress of land transformation in agricultural areas was analyzed from the perspective of settlement evolution, and the historical reconstruction of arable land was established using settlement as the proxy between their inner relationships, which could be reflected by the farming radius. The results show the following. (1) There was little land transformation from nonagricultural areas into agricultural areas until the Qing government lifted the ban on cultivation and mass migration accelerated the process, which was most significant during 1907–1912; (2) The overall trend of land transformation in this region is from northeast to southwest; (3) Taking the topographic maps as references, the spatial distribution of the reconstructed arable land accounts for 47.79% of the maps. When this proxy-based reconstruction method is applied to other regions, its limitations should be noticed. It is important to explore the research of farming radius calculations based on regional characteristics. To achieve land-system sustainability, long-term historical land change trajectories and characteristics should be applied to future policy making.


2020 ◽  
Vol 12 (8) ◽  
pp. 3331
Author(s):  
József Lennert ◽  
Jenő Zsolt Farkas ◽  
András Donát Kovács ◽  
András Molnár ◽  
Rita Módos ◽  
...  

The loss of farmland to urban use in peri-urban areas is a global phenomenon. Urban sprawl generates a decline in the availability of productive agricultural land around cities, causing versatile conflicts between nature and society and threatening the sustainability of urban agglomerations. This study aimed to uncover the spatial pattern of long-term (80 years) land cover changes in the functional urban area of Budapest, with special attention to the conversion of agricultural land. The paper is based on a unique methodology utilizing various data sources such as military-surveyed topographic maps from the 1950s, the CLC 90 from 1990, and the Urban Atlas from 2012. In addition, the multilayer perceptron (MLP) method was used to model land cover changes through 2040. The research findings showed that land conversion and the shrinkage of productive agricultural land around Budapest significantly intensified after the collapse of communism. The conversion of arable land to artificial surfaces increased, and by now, the traditional metropolitan food supply area around Budapest has nearly disappeared. The extent of forests and grasslands increased in the postsocialist period due to national afforestation programs and the demand of new suburbanites for recreational space. Urban sprawl and the conversion of agricultural land should be an essential issue during the upcoming E.U. Common Agricultural Policy (CAP) reforms.


2017 ◽  
Vol 9 (7) ◽  
pp. 1278 ◽  
Author(s):  
Zhenliang Yin ◽  
Qi Feng ◽  
Linshan Yang ◽  
Xiaohu Wen ◽  
Jianhua Si ◽  
...  

2018 ◽  
Vol 1 ◽  
pp. 1-5
Author(s):  
Georgianna Strode ◽  
Victor Mesev ◽  
Benjamin Thornton ◽  
Marjorie Jerez ◽  
Thomas Tricarico ◽  
...  

The terms ‘land use’ and ‘land cover’ typically describe categories that convey information about the landscape. Despite the major difference of land use implying some degree of anthropogenic disturbance, the two terms are commonly used interchangeably, especially when anthropogenic disturbance is ambiguous, say managed forestland or abandoned agricultural fields. Cartographically, land use and land cover are also sometimes represented interchangeably within common legends, giving with the impression that the landscape is a seamless continuum of land use parcels spatially adjacent to land cover tracts. We believe this is misleading, and feel we need to reiterate the well-established symbiosis of land uses as amalgams of land covers; in other words land covers are subsets of land use. Our paper addresses this spatially complex, and frequently ambiguous relationship, and posits that bivariate cartographic techniques are an ideal vehicle for representing both land use and land cover simultaneously. In more specific terms, we explore the use of nested symbology as ways to represent graphically land use and land cover, where land cover are circles nested with land use squares. We also investigate bivariate legends for representing statistical covariance as a means for visualizing the combinations of land use and cover. Lastly, we apply Sankey flow diagrams to further illustrate the complex, multifaceted relationships between land use and land cover. Our work is demonstrated on data representing land use and cover data for the US state of Florida.


2014 ◽  
Vol 22 (3) ◽  
pp. 29-41 ◽  
Author(s):  
Michal Druga ◽  
Vladimír Falťan

Abstract The influence of environmental drivers on long-term land cover changes in two mountainous villages in Central Slovakia is assessed in this paper using generalized linear models (GLM). Historical cadastral maps and aerial photographs were analyzed to describe the land cover change over five time horizons ranging from 1860 to the present, using the CORINE Land Cover classification. The hypothesis that higher slope, elevation and distance to settlement strongly influence lower intensities of land use was mostly confirmed, but geology was also identified as an important factor. The category of ‘forests’ was the most accounted for land cover class, while arable land and grassland were only considerably affected by the drivers in some periods. On the other hand, shrubs were almost completely unrelated to the investigated drivers. The areas of land cover change were not so well explained by the GLMs.


Author(s):  
Ol'ga Gladysheva ◽  
Oksana Artyuhova ◽  
Vera Svirina

The results of long-term research in experiments with crop rotations with different clover saturation are presented. It is shown that the cluster has a positive effect on the main indicators of vegetation of dark-gray forest soil. The introduction of two fields of perennial grasses into the six-field crop rotation significantly increases both the humus reserves and increases the productivity of arable land by 1.5–2 times compared to the crop rotation with a field of pure steam.


2014 ◽  
Vol 18 (9) ◽  
pp. 3763-3775 ◽  
Author(s):  
K. Meusburger ◽  
G. Leitinger ◽  
L. Mabit ◽  
M. H. Mueller ◽  
A. Walter ◽  
...  

Abstract. Snow processes might be one important driver of soil erosion in Alpine grasslands and thus the unknown variable when erosion modelling is attempted. The aim of this study is to assess the importance of snow gliding as a soil erosion agent for four different land use/land cover types in a subalpine area in Switzerland. We used three different approaches to estimate soil erosion rates: sediment yield measurements in snow glide depositions, the fallout radionuclide 137Cs and modelling with the Revised Universal Soil Loss Equation (RUSLE). RUSLE permits the evaluation of soil loss by water erosion, the 137Cs method integrates soil loss due to all erosion agents involved, and the measurement of snow glide deposition sediment yield can be directly related to snow-glide-induced erosion. Further, cumulative snow glide distance was measured for the sites in the winter of 2009/2010 and modelled for the surrounding area and long-term average winter precipitation (1959–2010) with the spatial snow glide model (SSGM). Measured snow glide distance confirmed the presence of snow gliding and ranged from 2 to 189 cm, with lower values on the north-facing slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is an important information with respect to conservation planning and expected and ongoing land use changes in the Alps. Snow glide erosion estimated from the snow glide depositions was highly variable with values ranging from 0.03 to 22.9 t ha−1 yr−1 in the winter of 2012/2013. For sites affected by snow glide deposition, a mean erosion rate of 8.4 t ha−1 yr−1 was found. The difference in long-term erosion rates determined with RUSLE and 137Cs confirms the constant influence of snow-glide-induced erosion, since a large difference (lower proportion of water erosion compared to total net erosion) was observed for sites with high snow glide rates and vice versa. Moreover, the difference between RUSLE and 137Cs erosion rates was related to the measured snow glide distance (R2 = 0.64; p < 0.005) and to the snow deposition sediment yields (R2 = 0.39; p = 0.13). The SSGM reproduced the relative difference of the measured snow glide values under different land uses and land cover types. The resulting map highlighted the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding appears to be a crucial and non-negligible process impacting soil erosion patterns and magnitude in subalpine areas with similar topographic and climatic conditions.


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 334
Author(s):  
Juraj Lieskovský ◽  
Dana Lieskovská

This study compares different nationwide multi-temporal spatial data sources and analyzes the cropland area, cropland abandonment rates and transformation of cropland to other land cover/land use categories in Slovakia. Four multi-temporal land cover/land use data sources were used: The Historic Land Dynamics Assessment (HILDA), the Carpathian Historical Land Use Dataset (CHLUD), CORINE Land Cover (CLC) data and Landsat images classification. We hypothesized that because of the different spatial, temporal and thematic resolution of the datasets, there would be differences in the resulting cropland abandonment rates. We validated the datasets, compared the differences, interpreted the results and combined the information from the different datasets to form an overall picture of long-term cropland abandonment in Slovakia. The cropland area increased until the Second World War, but then decreased after transition to the communist regime and sharply declined following the 1989 transition to an open market economy. A total of 49% of cropland area has been transformed to grassland, 34% to forest and 15% to urban areas. The Historical Carpathian dataset is the more reliable long-term dataset, and it records 19.65 km2/year average cropland abandonment for 1836–1937, 154.44 km2/year for 1938–1955 and 140.21 km2/year for 1956–2012. In comparison, the Landsat, as a recent data source, records 142.02 km2/year abandonment for 1985–2000 and 89.42 km2/year for 2000–2010. These rates, however, would be higher if the dataset contained urbanisation data and more precise information on afforestation. The CORINE Land Cover reflects changes larger than 5 ha, and therefore the reported cropland abandonment rates are lower.


2021 ◽  
Vol 10 (8) ◽  
pp. 523
Author(s):  
Nicholus Mboga ◽  
Stefano D’Aronco ◽  
Tais Grippa ◽  
Charlotte Pelletier ◽  
Stefanos Georganos ◽  
...  

Multitemporal environmental and urban studies are essential to guide policy making to ultimately improve human wellbeing in the Global South. Land-cover products derived from historical aerial orthomosaics acquired decades ago can provide important evidence to inform long-term studies. To reduce the manual labelling effort by human experts and to scale to large, meaningful regions, we investigate in this study how domain adaptation techniques and deep learning can help to efficiently map land cover in Central Africa. We propose and evaluate a methodology that is based on unsupervised adaptation to reduce the cost of generating reference data for several cities and across different dates. We present the first application of domain adaptation based on fully convolutional networks for semantic segmentation of a dataset of historical panchromatic orthomosaics for land-cover generation for two focus cities Goma-Gisenyi and Bukavu. Our experimental evaluation shows that the domain adaptation methods can reach an overall accuracy between 60% and 70% for different regions. If we add a small amount of labelled data from the target domain, too, further performance gains can be achieved.


Sign in / Sign up

Export Citation Format

Share Document