scholarly journals The Characteristics of Northeast China Cold Vortex With Different Active Paths in June and Their Relationship With Precipitation and Pre-SST

2021 ◽  
Vol 9 ◽  
Author(s):  
Yi-He Fang ◽  
Meng-Meng Zhang ◽  
Chun-Yu Zhao ◽  
Zhi-Qiang Gong ◽  
Xiao-Yu Zhou ◽  
...  

In this study, a K-means clustering (KMC) method was used to identify the paths of the Northeast China (NEC) Cold Vortex (NCCV). The NCCV was divided into four types according to the identified active paths: (1) Eastward movement type (EM); (2) Southeastward long-distance movement type (SLM); (3) Eastward short-distance movement type (ESM); and (4) Southward short-distance movement type (SSM). The characteristics of the four types of the NCCV, along with their impacts on the precipitation during early summer in NEC, were studied. The results showed that the KMC method can effectively divide the NCCV events into four different types. The maintaining days of these four types of the NCCV were found to have obvious interannual and interdecadal variation features. For example, the maintaining days of the EM and ESM types were mainly characterized by interannual variability, while the SLM and SSM types have the obvious 10–13a interdecadal variation along with interannual variability. In terms of the spatial distributions and impacts on precipitation, the EM type was found to appear in the majority of the areas located in NEC, the SLM type mainly occurred in the northwestern region of NEC and the highest rain center was located in the south-central portion, while the ESM type and SSM type were observed precipitation only appear in a small portion of the northeastern region. In addition, it is also observed the distribution of the sea-surface temperature (SST) anomalies had close relationship with the formation of these four types of the NCCV. The tripole distributions of the SST anomalies in the Atlantic Ocean corresponded to the EM type of the NCCV, the positive anomalies of SST in the eastern equatorial Pacific Ocean and negative anomalies in the western equatorial Pacific corresponded to the SLM type, the positive SSTs in the Northwest Pacific correspond to the ESM type, while negative anomalies SST in the western equatorial Pacific Ocean corresponded to the SSM type of the NCCV.

2018 ◽  
Vol 52 (7-8) ◽  
pp. 4351-4369 ◽  
Author(s):  
Xia Zhao ◽  
Dongliang Yuan ◽  
Guang Yang ◽  
Jing Wang ◽  
Hailong Liu ◽  
...  

1997 ◽  
Vol 48 (5) ◽  
pp. 371 ◽  
Author(s):  
Philip H. Towler ◽  
J. David Smith

The residence time of particulate and dissolved 210Pb in the upper layer of the western equatorial Pacific Ocean is examined. Activities of dissolved 226Ra, dissolved and particulate 210Pb, and particulate 210Po were determined to a depth of 300 m in a series of depth profiles collected along a transect across the equator at 155˚E in November 1993. Total 210Pb in the surface water decreased from 2·7 Bq m-3 at 10˚N to 1·8 Bq m-3 at 10˚S. Dissolved 210Pb generally decreased with depth but showed subsurface (100–150 m) maxima at 10˚N and 5˚N. The nutrient concentrations at 300 m were highest at these stations, suggesting some degree of upwelling. Calculations indicate that the residence times of dissolved (<0·45 µm) and particulate (>0·45 µm) 210Pb in the top 300 m were 4·6–9·6 years and 0·15–0·29 year respectively.


Nature ◽  
1986 ◽  
Vol 323 (6088) ◽  
pp. 523-526 ◽  
Author(s):  
G. Meyers ◽  
J. R. Donguy ◽  
R. K. Reed

1995 ◽  
Vol 13 (10) ◽  
pp. 1047-1053 ◽  
Author(s):  
N. C. Wells

Abstract. Estimates of the components of the surface heat flux in the Western Equatorial Pacific Ocean are presented for a 22-day period, together with a critical analysis of the errors. It is shown that the errors in latent heat, and solar and longwave radiation fluxes, dominate the net heat flux for this period. It is found that the net heat flux into the ocean over the 22-day period is not significantly different from zero. It is also demonstrated that because of the variability in daily averaged values of solar radiation and the latent heat of evaporation, a large number of independent flux measurements will be required to determine with confidence the climatological net heat flux in this region. The variability of latent fluxes over the 22-day period suggest that climatological estimates based on monthly mean observations may lead to a significant underestimate of the latent heat flux.


Nature ◽  
1987 ◽  
Vol 330 (6148) ◽  
pp. 533-537 ◽  
Author(s):  
Eric Lindstrom ◽  
Roger Lukas ◽  
Rana Fine ◽  
Eric Firing ◽  
Stuart Godfrey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document