scholarly journals Effects of Soil Nutrient Heterogeneity on the Growth and Invasion Success of Alien Plants: A Multi-Species Study

2021 ◽  
Vol 8 ◽  
Author(s):  
Fang-Lei Gao ◽  
Qiao-Sheng He ◽  
Yi-Dan Zhang ◽  
Jia-Hui Hou ◽  
Fei-Hai Yu

Spatial heterogeneity in soil nutrient availability can influence performance of invasive plant species under competition-free environments. However, little was known about whether invasive plants perform better under heterogeneous than under homogeneous soil nutrient conditions in competition with native plant communities. We conducted a multi-species greenhouse experiment to test the effect of soil nutrient heterogeneity on the growth and invasion success of alien plants in a native plant community. We grew ten alien invasive plant species that are common in China under a homogeneous or heterogeneous environment alone or together with a community consisting of six native plant species from China. Compared with the homogeneous soil condition, the heterogeneous soil condition significantly increased aboveground biomass of the invasive plants. However, soil nutrient heterogeneity did not affect the relative abundance of the invasive species, as measured by the ratio of aboveground biomass of the invasive species to total aboveground biomass of the whole community. There were no significant interactive effects of soil nutrient heterogeneity and competition from the native community on aboveground biomass of the invasive plants and also no significant effects of soil nutrient heterogeneity on its relative abundance. Our results indicate that soil nutrient heterogeneity has a positive effect on the growth of invasive plants in general, but do not support the idea that soil nutrient heterogeneity favors the invasion success of exotic plant species in native plant communities.

2021 ◽  
Vol 9 ◽  
Author(s):  
Andrew P. Landsman ◽  
John Paul Schmit ◽  
Elizabeth R. Matthews

Exotic plant species often negatively affect native herbivores due to the lack of palatability of the invading plant. Although often unsuitable as food, certain invasive species may provide non-nutritional ecological benefits through increased habitat structural complexity. To understand the potential for common invasive forest plant species of the eastern United States to benefit invertebrate communities, we examined the functional and taxonomic community composition of forest insects and spiders in long-term monitoring plots that contained invasive plant species. The extent of invasive plant species ground cover significantly altered spider community composition as categorized by hunting guild. Areas with higher invasive herbaceous and grass cover contained a higher abundance of space web-weaving and hunting spiders, respectively. Spider species richness and total invertebrate abundance also increased with greater invasive grass cover. Still, these trends were driven by just two invasive plant species, garlic mustard and Japanese stiltgrass, both of which have previously been shown to provide structural benefits to native invertebrate taxa. While these two species may improve the structural component of understory forest habitat, many invertebrate groups were not significantly correlated with other prevalent invasive plants and one species, mock strawberry, negatively affected the abundance of certain insect taxa. Particularly in forests with reduced native plant structure, invasive plant management must be conducted with consideration for holistic habitat quality, including both plant palatability and structure.


2021 ◽  
Author(s):  
Xiang-Qin Li ◽  
Sai-Chun Tang ◽  
Yu-Mei Pan ◽  
Chun-Qiang Wei ◽  
Shi-Hong Lü

Abstract Aims Nitrogen (N) deposition, precipitation and their interaction affect plant invasions in temperate ecosystems with limiting N and water resources, but whether and how they affect plant invasions in subtropical native communities with abundant N and precipitation remains unclear. Methods We constructed in situ artificial communities with 12 common native plant species in a subtropical system and introduced four common invasive plant species and their native counterparts to these communities. We compared plant growth and establishment of introduced invasive species and native counterparts in communities exposed to ambient (CK), N addition (N+), increased precipitation (P+) and N addition plus increased precipitation (P+N+). We also investigated the density and aboveground biomass of communities under such conditions. Important Findings P+ alone did not enhance the performance of invasive species or native counterparts. N+ enhanced only the aboveground biomass and relative density of invasive species. P+N+ enhanced the growth and establishment performance of both invasive species and native counterparts. Most growth and establishment parameters of invasive species were greater than those of native counterparts under N+, P+ and P+N+ conditions. The density and aboveground biomass of native communities established by invasive species were significantly lower than those of native communities established by native counterparts under P+N+ conditions. These results suggest that P+ may magnify the effects of N+ on performance of invasive species in subtropical native communities where N and water are often abundant, which may help to understand the effect of global change on plant invasion in subtropical ecosystems.


Phyton ◽  
2021 ◽  
Vol 90 (4) ◽  
pp. 1259-1271
Author(s):  
Simei Yao ◽  
Yu Jin ◽  
Limin Zhang ◽  
Ningfei Lei ◽  
Wei Xue ◽  
...  

HortScience ◽  
2018 ◽  
Vol 53 (9) ◽  
pp. 1244-1249
Author(s):  
S. Christopher Marble

By definition, an invasive plant is a non-native or alien species whose introduction causes or may cause economical or environmental harm. Due to well-documented and widespread devastating impacts of invasive plants, all exotic or introduced plant species often are erroneously referred to as invasive or considered detrimental, whereas native plants may be promoted as beneficial. Although invasive plants have been the subject of a great deal of research and discussion, less attention has been placed on native plant species that can become economically important weedy pests under certain scenarios, such as in landscape plantings or agricultural production systems. The objective of this manuscript is to synthesize current literature available on native weedy plants in Florida and other Southern United States (including Alabama, Arkansas, Georgia, Louisiana, North Carolina, Mississippi, South Carolina, Tennessee, and Texas) and discuss how their biology paired with human activities, preferences, and available management practices cause these species to proliferate and be problematic. Focus is placed on nine important native weeds in residential and commercial landscape plantings, including spurges (Euphorbia spp.), woodsorrels (Oxalis spp.), saw palmetto [Serenoa repens (Bartram) Small], bracken fern [Pteridium aquilinum (L.) Kuhn], artillery weed (Pilea microphylla L.), Virginia creeper [Parthenocissus quinquefolia (L.) Planch], trumpet creeper [Campsis radicans (L.) Seem. Ex Bureau], eastern poison ivy [Toxicodendron radicans (L.) Kuntze], and pennyworts/dollarweed (Hydrocotyle spp.). Reasons these species become problematic, including fast growth and reproductive rates, lack of selective management options, and ability to thrive in the landscape environment, also are discussed.


2017 ◽  
Vol 4 (1) ◽  
pp. 148-160
Author(s):  
Arjun C.P ◽  
Anoop V.K ◽  
Tijo K.J ◽  
Anoopkumar T.K ◽  
Roshnath R

Butterfly diversity was recorded from Nov (2013) - May (2014) in Pookode region. A total number of 128 species recorded from the five families; Nymphalidae (46 species) Lycaenidae (28 species), Hesperiidae (22 species), Pieridae (17 species) and Papilionidae (15 species) respectively. During the survey invasive plant species were also recorded. There were 36 species of invasive plants from 18 families identified from the study area. More butterflies were attracted towards nectar offering invasive plants. Chromolaena odorata, Ipomea cairica, Lantana camara, Merremia vitifolia, Mikania micrantha, Mimosa diplotricha, Pennisetumpolystachyon, Pteridium aquilinum, Quisqualis indica and Sphagneticola trilobata were the major invasive plants found in the Pookode region and their flower attracts butterfly for pollination. Even though nectar offered by the plants are supportive for growth, in long run these species can affect butterfly population bydeclining native host larval plant species for butterfly reproduction. Invasive species compete with the native flora and reduce its population. Management practices like physical, chemical and modern bio control measures could be used for eradicating of invasive plants. Wise use of invasive plants for other economical purpose such as bio-fuel, medicinal purpose, bio-pesticide and handicraft could be suggested. Successful management of invasive species are needed for conserving Lepidoptera fauna and other native biota of the area.


Author(s):  
Jin Zheng ◽  
Tai-Jie Zhang ◽  
Bo-Hui Li ◽  
Wei-Jie Liang ◽  
Qi-Lei Zhang ◽  
...  

Phenotypic plasticity affords invasive plant species the ability to colonize a wide range of habitats, but physiological plasticity of their stems is seldom recognized. Investigation of the stem plasticity of invasive plant species could lead to a better understanding of their invasiveness. We performed a pot experiment involving defoliation treatments and an isolated culture experiment to determine whether the invasive species Mikania micrantha exhibits greater plasticity in the stems than do three native species that co-occur in southern China and then explored the mechanism underlying the modification of its stem photosynthesis. Our results showed that the stems of M. micrantha exhibited higher plasticity in terms of either net or gross photosynthesis in response to the defoliation treatment. These effects were positively related to an increased stem elongation rate. The enhancement of stem photosynthesis in M. micrantha resulted from the comprehensive action involving increases in the Chl a/b ratio, D1 protein and stomatal aperture, changes in chloroplast morphology and a decrease in anthocyanins. Increased plasticity of stem photosynthesis may improve the survival of M. micrantha under harsh conditions and allow it to rapidly recover from defoliation injuries. Our results highlight that phenotypic plasticity promotes the invasion success of alien plant invaders.


The Condor ◽  
2021 ◽  
Author(s):  
Douglas W Tallamy ◽  
W Gregory Shriver

Abstract A flurry of recently published studies indicates that both insects and birds have experienced wide-scale population declines in the last several decades. Curiously, whether insect and bird declines are causally linked has received little empirical attention. Here, we hypothesize that insect declines are an important factor contributing to the decline of insectivorous birds. We further suggest that insect populations essential to insectivorous birds decline whenever non-native lumber, ornamental, or invasive plant species replace native plant communities. We support our hypothesis by reviewing studies that show (1) due to host plant specialization, insect herbivores typically do poorly on non-native plants; (2) birds are often food limited; (3) populations of insectivorous bird species fluctuate with the supply of essential insect prey; (4) not all arthropod prey support bird reproduction equally well; and (5) terrestrial birds for which insects are an essential source of food have declined by 2.9 billion individuals over the last 50 years, while terrestrial birds that do not depend on insects during their life history have gained by 26.2 million individuals, a 111-fold difference. Understanding the consequences of insect declines, particularly as they affect charismatic animals like birds, may motivate land managers, homeowners, and restoration ecologists to take actions that reverse these declines by favoring the native plant species that support insect herbivores most productively.


2020 ◽  
pp. 27-46
Author(s):  
Anja Kalinic ◽  
Ivana Bjedov ◽  
Dragica Obratov-Petkovic ◽  
Jelena Tomicevic-Dubljevic

The floristic diversity of Deliblato sands SNR is significantly endangered by the spread of invasive plants. In addition to field research, which included the collection of plant material in the area of Deliblato sands SNR, primary and secondary data was collected in this paper. The primary data for the purposes of this study was obtained by applying a questionnaire technique to the management of the protected area - PE ?Vojvodinasume? and an expert interview technique to a representative of the Provincial Institute for Nature Conservation. The secondary data was collected to gain a better and broader understanding of the management of Deliblato sands SNR. Based on the field investigations, the analysis of primary and secondary data on invasive plant species was also recognized as a key threatening factor. An analysis of the floristic structure and composition of these plant species, their origin, as well as the manner of their propagation and reproduction was carried out, in order to make a recommendation on the preventive measures for the protection and suppression of invasive plant species and to improve the habitat. In the area of Deliblato sands SNR, 39 invasive plant species (4,33% of the total flora) were found with different invasiveness categories, among which herbaceous, annual, North American species from the Compositae family prevail. Protection measures include the mapping of habitats of invasive species, establishing cooperation with managers and scientific institutions, constant monitoring of endangered habitats and plant species, as well as the creation of a special sector responsible for enhancing biodiversity.


Sign in / Sign up

Export Citation Format

Share Document