scholarly journals How to Restore Invertebrate Diversity of Degraded Heathlands? A Case Study on the Reproductive Performance of the Field Cricket Gryllus campestris (L.)

2021 ◽  
Vol 9 ◽  
Author(s):  
Joost J. Vogels ◽  
W. C. E. P. Verberk ◽  
J. T. Kuper ◽  
M. J. Weijters ◽  
R. Bobbink ◽  
...  

BackgroundNitrogen (NOx, NHy) and acidifying (NOx, NHy, SOx) deposition has reduced the biodiversity of European dry heathlands. Restoration efforts such as sod-cutting (removal of vegetation, litter and humus layer) often shifted these systems from N to P limitation and have had limited success in restoring the invertebrate community. Possible reasons for this include the unresolved acidification and a change in food plant stoichiometry. Here, we investigate how liming and P addition change food nutritional quality and their consequences for invertebrate performance.MethodsWe performed feeding experiments with field crickets (Gryllus campestris), using plant material collected from a full factorial field experiment with liming and P addition. We related female reproduction as measure of individual fitness to elemental ratios of plants fed to the crickets.ResultsP addition stimulated cricket daily reproduction and shortened their reproductive period, resulting in no difference in total reproduction. Liming greatly reduced both daily and total reproduction and resulted in more females cannibalizing on their male mates. Females that did so could partly offset the liming induced reduction in reproduction, suggesting dietary deficiency. P-addition improved food quality (lower N:P ratios) while liming led to skewed Mn:Mg and Fe:Mg ratios that compare unfavorably to ratios found in terrestrial invertebrates.ConclusionIncreased plant N:P ratio following sod-cutting constrains the reproductive potential in Gryllus campestris in a non-linear way. Liming reduced nutritional quality, likely by inducing deficiencies in Fe or Mn.Management ImplicationsHigh-impact restoration management practices such as sod cutting and liming cause new problems for invertebrates rooted in ecological stoichiometry. Since P-addition only partially offsets these negative effects, we instead advocate the use of less intensive N removal management and weaker buffering agents to reduce soil acidification. Furthermore, a reduction in N emission is paramount as it will remove the need for disruptive interventions.

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 498e-498
Author(s):  
S. Paramasivam ◽  
A.K. Alva

For perennial crop production conditions, major portion of nutrient removal from the soil-tree system is that in harvested fruits. Nitrogen in the fruits was calculated for 22-year-old `Hamlin' orange (Citrus sinensis) trees on Cleopatra mandarin (Citrus reticulata) rootstock, grown in a Tavares fine sand (hyperthermic, uncoated, Typic Quartzipsamments) that received various N rates (112, 168, 224, and 280 kg N/ha per year) as either i) broadcast of dry granular form (DGF; four applications/year), or ii) fertigation (FRT; 15 applications/year). Total N in the fruits (mean across 4 years) varied from 82 to 110 and 89 to 111 kg N/ha per year for the DGF and FRT sources, respectively. Proportion of N in the fruits in relation to N applied decreased from 74% to 39% for the DGF and from 80% to 40% for the FRT treatments. High percentage of N removal in the fruits in relation to total N applied at low N rates indicate that trees may be depleting the tree reserve for maintaining fruit production. This was evident, to some extent, by the low leaf N concentration at the low N treatments. Furthermore, canopy density was also lower in the low N trees compared to those that received higher N rates.


2016 ◽  
Vol 20 (1) ◽  
pp. 109-123 ◽  
Author(s):  
M. M. R. Jahangir ◽  
K. G. Richards ◽  
M. G. Healy ◽  
L. Gill ◽  
C. Müller ◽  
...  

Abstract. The removal efficiency of carbon (C) and nitrogen (N) in constructed wetlands (CWs) is very inconsistent and frequently does not reveal whether the removal processes are due to physical attenuation or whether the different species have been transformed to other reactive forms. Previous research on nutrient removal in CWs did not consider the dynamics of pollution swapping (the increase of one pollutant as a result of a measure introduced to reduce a different pollutant) driven by transformational processes within and around the system. This paper aims to address this knowledge gap by reviewing the biogeochemical dynamics and fate of C and N in CWs and their potential impact on the environment, and by presenting novel ways in which these knowledge gaps may be eliminated. Nutrient removal in CWs varies with the type of CW, vegetation, climate, season, geographical region, and management practices. Horizontal flow CWs tend to have good nitrate (NO3−) removal, as they provide good conditions for denitrification, but cannot remove ammonium (NH4+) due to limited ability to nitrify NH4+. Vertical flow CWs have good NH4+ removal, but their denitrification ability is low. Surface flow CWs decrease nitrous oxide (N2O) emissions but increase methane (CH4) emissions; subsurface flow CWs increase N2O and carbon dioxide (CO2) emissions, but decrease CH4 emissions. Mixed species of vegetation perform better than monocultures in increasing C and N removal and decreasing greenhouse gas (GHG) emissions, but empirical evidence is still scarce. Lower hydraulic loadings with higher hydraulic retention times enhance nutrient removal, but more empirical evidence is required to determine an optimum design. A conceptual model highlighting the current state of knowledge is presented and experimental work that should be undertaken to address knowledge gaps across CWs, vegetation and wastewater types, hydraulic loading rates and regimes, and retention times, is suggested. We recommend that further research on process-based C and N removal and on the balancing of end products into reactive and benign forms is critical to the assessment of the environmental performance of CWs.


1997 ◽  
Vol 56 (2) ◽  
pp. 587-589 ◽  
Author(s):  
P. Pearce–Kelly ◽  
P. Croft ◽  
P. Atkin ◽  
D. Clarke

2008 ◽  
Vol 25 (2) ◽  
pp. 370-372 ◽  
Author(s):  
Carlos Frederico Duarte Rocha

In this study 57 specimens of the lizard Ameiva ameiva (Linnaeus, 1758) collected in the restinga at Barra de Maricá, in the state of Rio de Janeiro, southeastern Brazil, were analyzed to investigate size relations and reproduction (in females) and sexual dimorphism of this population. We answered the following questions: 1) what is the minimum reproductive body size in females? 2) what is the average clutch size and 3) how is clutch size related to body size? 4) Are body and head sizes sexually dimorphic? Mean clutch size was 6.7 ± 2.1 eggs and was positively correlated with female body size. Sexual dimorphism favoring males was found: adult mean snout-vent length was great in males (124.2 ± 17.8 mm) than females (96.5 ± 23.1 mm SVL), and males were larger with respect to head width and length, and body mass. Thus, despite the marked seasonality at Barra de Maricá, A. ameiva has an extended reproductive period. Also, intrasexual selection may have acted on females to produce larger clutches, and on males, favoring larger males.


2003 ◽  
Vol 65 (4) ◽  
pp. 721-727 ◽  
Author(s):  
Hannes Scheuber ◽  
Alain Jacot ◽  
Martin W.G. Brinkhof

Author(s):  
Kwaku Asante ◽  
Joseph Manu-Aduening ◽  
Margaret Esi Essilfie

Nutritional quality of most high valued crops including carrot can be influenced by soil management practices. A field study to evaluate soil management improvement effect on nutritional quality of carrot was carried out in two contrasting cropping seasons of two rainfall regimes ranging from 600 mm to 800 mm in 2016 and 2017 at Mampong in the Forest-Savannah transition zone of Ghana. Three rates of soil amendments using biochar rates of 0, 5 and 10 tons/ha and five rates of inorganic fertilizers (NPK 15:15:15 at 200 kg/ha; P&K 50:50 at 50 kg/ha; P&K 50:100 at 50 kg/ha; Liquid Fertilizer at 1 L: 200 L Water/ha; and the control were applied using 3x5 factorial in RCBD. The combined analysis for the different treatments showed that NPK at 200 kg/ha+10 ton/ha biochar gave the highest protein content while Liquid fertilizer+5 ton/ha biochar gave the highest beta-carotene and total carotenoid contents in carrot root during the minor cropping season of 2016. However, during the major copping season of 2017, a combination of liquid fertilizer +10 ton/ha biochar gave the highest protein content whilst NPK at 200 kg/ha +5 ton/ha biochar gave the highest carotenoid content for the carrot. Nutritional contents such as carbohydrate, beta-carotene and total carotenoids were boosted by soil amendments. This indicates that both biochar and inorganic fertilizers have varying effects on the nutritional qualities of carrot.


2008 ◽  
Vol 37 (spe) ◽  
pp. 68-77 ◽  
Author(s):  
Giorgio Borreani ◽  
Thiago Fernandes Bernardes ◽  
Ernesto Tabacco

Maize and sorghum silages are good sources of energy for lactating dairy cows that produce milk destined for fresh and matured cheeses. Silages are usually stored in horizontal silos with or without side walls on commercial farms throughout the world. The main microbiological and nutritional quality problems are related to harvesting time, ensiling technology, and management practices during filling and feed-out. Aerobic deterioration is a key point that must avoided on farms in order to improve the hygienic, chemical and sensorial quality of milk and cheeses. Aerobic deterioration causes large losses of dry matter (DM) and quality, and it can cause health problems for animals and humans through the transfer of pathogens and mycotoxins from feed and livestock to food products. The objectives of the present work were to overview management practices connected to the storage of maize and sorghum in horizontal silos on farms producing milk for make Protected Designation of Origin (PDO) hard ripened cheese, to define good management practices that should be applied as the basis for safe silage production and to reduce the extent of aerobic deterioration.


Sign in / Sign up

Export Citation Format

Share Document