scholarly journals Soil Moisture but Not Warming Dominates Nitrous Oxide Emissions During Freeze–Thaw Cycles in a Qinghai–Tibetan Plateau Alpine Meadow With Discontinuous Permafrost

2021 ◽  
Vol 9 ◽  
Author(s):  
Zhe Chen ◽  
Shidong Ge ◽  
Zhenhua Zhang ◽  
Yangong Du ◽  
Buqing Yao ◽  
...  

Large quantities of organic matter are stored in frozen soils (permafrost) within the Qinghai–Tibetan Plateau (QTP). The most of QTP regions in particular have experienced significant warming and wetting over the past 50 years, and this warming trend is projected to intensify in the future. Such climate change will likely alter the soil freeze–thaw pattern in permafrost active layer and toward significant greenhouse gas nitrous oxide (N2O) release. However, the interaction effect of warming and altered soil moisture on N2O emission during freezing and thawing is unclear. Here, we used simulation experiments to test how changes in N2O flux relate to different thawing temperatures (T5–5°C, T10–10°C, and T20–20°C) and soil volumetric water contents (VWCs, W15–15%, W30–30%, and W45–45%) under 165 F–T cycles in topsoil (0–20 cm) of an alpine meadow with discontinuous permafrost in the QTP. First, in contrast to the prevailing view, soil moisture but not thawing temperature dominated the large N2O pulses during F–T events. The maximum emissions, 1,123.16–5,849.54 μg m–2 h–1, appeared in the range of soil VWC from 17% to 38%. However, the mean N2O fluxes had no significant difference between different thawing temperatures when soil was dry or waterlogged. Second, in medium soil moisture, low thawing temperature is more able to promote soil N2O emission than high temperature. For example, the peak value (5,849.54 μg m–2 h–1) and cumulative emissions (366.6 mg m–2) of W30T5 treatment were five times and two to four times higher than W30T10 and W30T20, respectively. Third, during long-term freeze–thaw cycles, the patterns of cumulative N2O emissions were related to soil moisture. treatments; on the contrary, the cumulative emissions of W45 treatments slowly increased until more than 80 cycles. Finally, long-term freeze–thaw cycles could improve nitrogen availability, prolong N2O release time, and increase N2O cumulative emission in permafrost active layer. Particularly, the high emission was concentrated in the first 27 and 48 cycles in W15 and W30, respectively. Overall, our study highlighted that large emissions of N2O in F–T events tend to occur in medium moisture soil at lower thawing temperature; the increased number of F–T cycles may enhance N2O emission and nitrogen mineralization in permafrost active layer.

2015 ◽  
Vol 146 ◽  
pp. 213-222 ◽  
Author(s):  
Cimélio Bayer ◽  
Juliana Gomes ◽  
Josiléia Accordi Zanatta ◽  
Frederico Costa Beber Vieira ◽  
Marisa de Cássia Piccolo ◽  
...  

2019 ◽  
Vol 226 ◽  
pp. 16-25 ◽  
Author(s):  
Donghai Zheng ◽  
Xin Li ◽  
Xin Wang ◽  
Zuoliang Wang ◽  
Jun Wen ◽  
...  

2018 ◽  
Vol 17 (1) ◽  
pp. 231-246 ◽  
Author(s):  
Zhe CHEN ◽  
Shi-qi YANG ◽  
Ai-ping ZHANG ◽  
Xin JING ◽  
Wei-min SONG ◽  
...  

2008 ◽  
Vol 311 (1-2) ◽  
pp. 245-254 ◽  
Author(s):  
Yangong Du ◽  
Yingguang Cui ◽  
Xingliang Xu ◽  
Dongying Liang ◽  
Ruijun Long ◽  
...  

2018 ◽  
Vol 8 (10) ◽  
pp. 4958-4966 ◽  
Author(s):  
Rose M. Martin ◽  
Cathleen Wigand ◽  
Elizabeth Elmstrom ◽  
Javier Lloret ◽  
Ivan Valiela

2018 ◽  
Vol 262 ◽  
pp. 36-47 ◽  
Author(s):  
Daniel Plaza-Bonilla ◽  
Jorge Álvaro-Fuentes ◽  
Javier Bareche ◽  
Evangelina Pareja-Sánchez ◽  
Éric Justes ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Wen Li ◽  
Jinlan Wang ◽  
Xiaolong Li ◽  
Shilin Wang ◽  
Wenhui Liu ◽  
...  

Abstract Soil respiration (Rs) plays a critical role in the global carbon (C) balance, especially in the context of globally increasing nitrogen (N) deposition. However, how N-addition influences C cycle remains unclear. Here, we applied seven levels of N application (0 (N0), 54 (N1), 90 (N2), 126 (N3), 144 (N4), 180 (N5) and 216 kg N ha−1 yr−1 (N6)) to quantify their impacts on Rs and its components (autotrophic respiration (Ra) and heterotrophic respiration (Rh)) and C and N storage in vegetation and soil in alpine meadow on the northeast margin of the Qinghai-Tibetan Plateau. We used a structural equation model (SEM) to explore the relative contributions of C and N storage, soil temperature and soil moisture and their direct and indirect pathways in regulating soil respiration. Our results revealed that the Rs, Ra and Rh, C and N storage in plant, root and soil (0–10 cm and 10–20 cm) all showed initial increases and then tended to decrease at the threshold level of 180 kg N ha−1 yr−1. The SEM results indicated that soil temperature had a greater impact on Rs than did volumetric soil moisture. Moreover, SEM also showed that C storage (in root, 0–10 and 10–20 cm soil layers) was the most important factor driving Rs. Furthermore, multiple linear regression model showed that the combined root C storage, 0–10 cm and 10–20 cm soil layer C storage explained 97.4–97.6% variations in Rs; explained 94.5–96% variations in Ra; and explained 96.3–98.1% in Rh. Therefore, the growing season soil respiration and its components can be well predicted by the organic C storage in root and topsoil in alpine meadow of the north-eastern Qinghai-Tibetan Plateau. Our study reveals the importance of topsoil and root C storage in driving growing season Rs in alpine meadow on the northeast margin of Qinghai-Tibetan Plateau.


2020 ◽  
Vol 12 (18) ◽  
pp. 7573
Author(s):  
Ling Li ◽  
Hongguang Liu ◽  
Xinlin He ◽  
En Lin ◽  
Guang Yang

Winter irrigation affected the movement of soil moisture, temperature, and salt, which was an effective improvement measure widely used in seasonal freeze–thaw areas. In this paper, we investigated the effects of different salinized cotton fields (mild salinization (S1), 5.15 g·kg−1; moderate salinization (S2), 8.17 g·kg−1; severe salinization (S3), 11.15 g·kg−1) and different winter irrigation rates (W0, 0 m3·hm-2; W1, 3000 m3·hm-2; W2, 3600 m3·hm-2; W3, 4200 m3·hm-2) on soil moisture, temperature, salinity, and cotton growth in seasonal freeze–thaw areas. The results showed that the winter irrigation affected the temporal and spatial dynamics of soil moisture, temperature, and salinity, and the winter irrigation rate and degree of soil salinization were significantly correlated with soil moisture, temperature, and salinity (p < 0.01). Winter irrigation stabilized the soil temperature and reduced the freeze–thaw index of the soil. The heat conservation effect of winter irrigation increased with increasing winter irrigation rate and salinization degree, with the greatest effect on the freezing index of S2 and on the thawing index of S3. The soil water content and total salt concentration before spring tillage were significantly correlated with winter irrigation rate and degree of soil salinization (p < 0.05), and when the winter irrigation quota of different salinized cotton fields was greater than 3600 m3·hm-2, the moisture content of soil layer 0–100cm increased by more than 20%, and the desalination reached over 40%, compared with the values before winter irrigation. Winter irrigation improved the emergence rate and yield of cotton, with the soil salinization degree being significantly negatively correlated and winter irrigation rate significantly positively correlated with the emergence rate and yield of cotton fields in the following year (p < 0.01). Compared with the control treatment without winter irrigation, the average increases in cotton yield were W3 (53.32%) > W2 (45.00%) > W1 (29.36%). There was no significant difference in seedling emergence rate or yield between slightly and moderately salinized cotton fields under high winter irrigation rates (W2 and W3) (p > 0.05), although the seedling emergence rate and yield of severely salinized cotton fields increased significantly with increasing winter irrigation rate. In conclusion, winter irrigation proved to be a valuable treatment for severely salinized cotton fields, and the results of this study allowed us to determine the optimal winter irrigation rate for saline alkali cotton fields.


Sign in / Sign up

Export Citation Format

Share Document