scholarly journals Relating the Strength of Density Dependence and the Spatial Distribution of Individuals

2021 ◽  
Vol 9 ◽  
Author(s):  
Micah Brush ◽  
John Harte

Spatial patterns in ecology contain useful information about underlying mechanisms and processes. Although there are many summary statistics used to quantify these spatial patterns, there are far fewer models that directly link explicit ecological mechanisms to observed patterns easily derived from available data. We present a model of intraspecific spatial aggregation that quantitatively relates static spatial patterning to negative density dependence. Individuals are placed according to the colonization rule consistent with the Maximum Entropy Theory of Ecology (METE), and die with probability proportional to their abundance raised to a power α, a parameter indicating the degree of density dependence. This model can therefore be interpreted as a hybridization of MaxEnt and mechanism. Our model shows quantitatively and generally that increasing density dependence randomizes spatial patterning. α = 1 recovers the strongly aggregated METE distribution that is consistent with many ecosystems empirically, and as α → 2 our prediction approaches the binomial distribution consistent with random placement. For 1 < α < 2, our model predicts more aggregation than random placement but less than METE. We additionally relate our mechanistic parameter α to the statistical aggregation parameter k in the negative binomial distribution, giving it an ecological interpretation in the context of density dependence. We use our model to analyze two contrasting datasets, a 50 ha tropical forest and a 64 m2 serpentine grassland plot. For each dataset, we infer α for individual species as well as a community α parameter. We find that α is generally larger in the tightly packed forest than the sparse grassland, and the degree of density dependence increases at smaller scales. These results are consistent with current understanding in both ecosystems, and we infer this underlying density dependence using only empirical spatial patterns. Our model can easily be applied to other datasets where spatially explicit data are available.

2019 ◽  
Author(s):  
Micah Brush ◽  
John Harte

ABSTRACTSpatial patterns in ecology contain useful information about underlying mechanisms and processes. Although there are many summary statistics used to quantify these spatial patterns, there are far fewer models that directly link explicit ecological mechanisms to observed patterns easily derived from available data. We present a model of intraspecific spatial aggregation that quantitatively relates static spatial patterning to negative density dependence. Individuals are placed according to the colonization rule consistent with the Maximum Entropy Theory of Ecology (METE), and die with probability proportional to their abundance raised to a power α, a parameter indicating the degree of density dependence. Our model shows quantitatively and generally that increasing density dependence randomizes spatial patterning. α = 1 recovers the strongly aggregated METE distribution that is consistent with many ecosystems empirically, and as α → 2 our prediction approaches the binomial distribution consistent with random placement. In between our model predicts less aggregation than METE, but more than random placement. We additionally relate our mechanistic parameter α to the statistical aggregation parameter k in the negative binomial distribution, giving it an ecological interpretation in the context of density dependence. We use our model to analyze two contrasting datasets, a 50 ha tropical forest and a 64 m2 serpentine grassland plot. For each dataset, we infer α for individual species as well as a community α parameter. We find that α is generally larger in the tightly packed forest than the sparse grassland, and the degree of density dependence increases at smaller scales. These results are consistent with current understanding in both ecosystems, and we infer this underlying density dependence using only empirical spatial patterns. Our model can easily be applied to other datasets where spatially explicit data are available.


Ecology ◽  
2011 ◽  
Vol 92 (9) ◽  
pp. 1723-1729 ◽  
Author(s):  
Robert Bagchi ◽  
Peter A Henrys ◽  
Patrick E Brown ◽  
David F. R. P Burslem ◽  
Peter J Diggle ◽  
...  

Weed Science ◽  
1992 ◽  
Vol 40 (4) ◽  
pp. 554-557 ◽  
Author(s):  
Lori J. Wiles ◽  
Glenn W. Oliver ◽  
Alan C. York ◽  
Harvey J. Gold ◽  
Gail G. Wilkerson

Spatial distribution of broadleaf weeds within 14 North Carolina soybean fields was characterized by fitting negative binomial distributions to frequency distributions of weed counts in each field. In most cases, the data could be represented by a negative binomial distribution. Estimated values of the parameter K of this distribution were small, often less than one, indicating a high degree of patchiness. The data also indicated that the population as a whole was patchy. Counts of individual species were positively correlated with each other in some fields and total weed count could be represented by a negative binomial for 12 of the 14 fields.


2019 ◽  
Vol 53 (5) ◽  
pp. 417-422
Author(s):  
P. De los Ríos ◽  
E. Ibáñez Arancibia

Abstract The coastal marine ecosystems in Easter Island have been poorly studied, and the main studies were isolated species records based on scientific expeditions. The aim of the present study is to apply a spatial distribution analysis and niche sharing null model in published data on intertidal marine gastropods and decapods in rocky shore in Easter Island based in field works in 2010, and published information from CIMAR cruiser in 2004. The field data revealed the presence of decapods Planes minutus (Linnaeus, 1758) and Leptograpsus variegatus (Fabricius, 1793), whereas it was observed the gastropods Nodilittorina pyramidalis pascua Rosewater, 1970 and Nerita morio (G. B. Sowerby I., 1833). The available information revealed the presence of more species in data collected in 2004 in comparison to data collected in 2010, with one species markedly dominant in comparison to the other species. The spatial distribution of species reported in field works revealed that P. minutus and N. morio have aggregated pattern and negative binomial distribution, L. variegatus had uniform pattern with binomial distribution, and finally N. pyramidalis pascua, in spite of aggregated distribution pattern, had not negative binomial distribution. Finally, the results of null model revealed that the species reported did not share ecological niche due to competition absence. The results would agree with other similar information about littoral and sub-littoral fauna for Easter Island.


2011 ◽  
Vol 10 (2) ◽  
pp. 1
Author(s):  
Y. ARBI ◽  
R. BUDIARTI ◽  
I G. P. PURNABA

Operational risk is defined as the risk of loss resulting from inadequate or failed internal processes or external problems. Insurance companies as financial institution that also faced at risk. Recording of operating losses in insurance companies, were not properly conducted so that the impact on the limited data for operational losses. In this work, the data of operational loss observed from the payment of the claim. In general, the number of insurance claims can be modelled using the Poisson distribution, where the expected value of the claims is similar with variance, while the negative binomial distribution, the expected value was bound to be less than the variance.Analysis tools are used in the measurement of the potential loss is the loss distribution approach with the aggregate method. In the aggregate method, loss data grouped in a frequency distribution and severity distribution. After doing 10.000 times simulation are resulted total loss of claim value, which is total from individual claim every simulation. Then from the result was set the value of potential loss (OpVar) at a certain level confidence.


Sign in / Sign up

Export Citation Format

Share Document