scholarly journals Comparing Soil Nitrous Oxide and Methane Fluxes From Oil Palm Plantations and Adjacent Riparian Forests in Malaysian Borneo

2021 ◽  
Vol 4 ◽  
Author(s):  
Julia Drewer ◽  
Harry John Kuling ◽  
Nicholas Jon ◽  
Noreen Majalap ◽  
Justin Sentian ◽  
...  

Riparian forests are often kept as buffers between rivers and oil palm plantations. Many benefits of riparian forests, such as increasing biodiversity and providing a travel corridor for wildlife have been documented. Conversely, data on fluxes of the greenhouse gases nitrous oxide (N2O) and methane (CH4) from riparian forests are sparse. Nitrogen (N) from fertilizer applied in the oil palm plantations leached to the adjacent riparian forests, may increase emissions of N2O. Methane (CH4) fluxes might also differ between oil palm plantations and riparian forests due to carbon (C) availability. In this scoping study, we installed transects from three mature oil palm plantations to adjacent riparian forests within the SAFE project landscape in Sabah, Malaysia (https://www.safeproject.net) for measurements of greenhouse gases and associated parameters every 2 months for 13 months. Emissions of N2O were higher from riparian forests with 40.4 [95% confidence intervals (CI): 35.7–44.6] μg N2O-N m–2 h–1 than from an equivalent area of oil palm plantation 27.6 (CI: 23.1–32.3) μg N2O-N m–2 h–1. Methane uptake was significantly higher from the riparian forest with −14.7 (CI: −21.1 to −8.3) μg CH4-C m–2 h–1 compared to slight positive emission in the oil palm plantations of 6.3 (CI: 1.1–11.4) μg CH4-C m–2 h–1. We are contributing urgently needed flux data for less well studied riparian forests in the Tropics, however, additional long-term studies are needed to be able to draw wider conclusions than possible from this scoping study alone.

Climate ◽  
2016 ◽  
Vol 4 (4) ◽  
pp. 62 ◽  
Author(s):  
Haimanote Bayabil ◽  
Cathelijne Stoof ◽  
Cedric Mason ◽  
Brian Richards ◽  
Tammo Steenhuis

2020 ◽  
Vol 29 (7) ◽  
pp. 602
Author(s):  
Grant L. Harley ◽  
Emily K. Heyerdahl ◽  
James D. Johnston ◽  
Diana L. Olson

Riparian forests link terrestrial and freshwater communities and therefore understanding the landscape context of fire regimes in these forests is critical to fully understanding the landscape ecology. However, few direct studies of fire regimes exist for riparian forests, especially in the landscape context of adjacent upland forests or studies of long-term climate drivers of riparian forest fires. We reconstructed a low-severity fire history from tree rings in 38 1-ha riparian plots and combined them with existing fire histories from 104 adjacent upland plots to yield 2633 fire scars sampled on 454 trees. Historically (1650–1900), low-severity fires burned more frequently in upland than in riparian plots, but this difference was not significant (P=0.15). During more than half of the fire years at both sites, fires were extensive and burned synchronously in riparian and upland plots, and climate was significantly dry during these years. However, climate was not significantly dry when fires burned in only one plot type. Historically, entire riparian zones likely burned in these two study sites of the Blue Mountains during dry years. This study suggests that riparian and upland forests could be managed similarly, especially given the projected increases to fire frequency and intensity from impending climate change.


2019 ◽  
Vol 5 (11) ◽  
pp. eaaw4418 ◽  
Author(s):  
Juan Carlos Quezada ◽  
Andres Etter ◽  
Jaboury Ghazoul ◽  
Alexandre Buttler ◽  
Thomas Guillaume

Alternatives to ecologically devastating deforestation land use change trajectories are needed to reduce the carbon footprint of oil palm (OP) plantations in the tropics. Although various land use change options have been proposed, so far, there are no empirical data on their long-term ecosystem carbon pools effects. Our results demonstrate that pasture-to-OP conversion in savanna regions does not change ecosystem carbon storage, after 56 years in Colombia. Compared to rainforest conversion, this alternative land use change reduces net ecosystem carbon losses by 99.7 ± 9.6%. Soil organic carbon (SOC) decreased until 36 years after conversion, due to a fast decomposition of pasture-derived carbon, counterbalancing the carbon gains in OP biomass. The recovery of topsoil carbon content, suggests that SOC stocks might partly recover during a third plantation cycle. Hence, greater OP sustainability can be achieved if its expansion is oriented toward pasture land.


2009 ◽  
Vol 55 (3) ◽  
pp. 435-440 ◽  
Author(s):  
Hiroko Akiyama ◽  
Atsushi Hayakawa ◽  
Shigeto Sudo ◽  
Seiichiro Yonemura ◽  
Takeshi Tanonaka ◽  
...  

2021 ◽  
Author(s):  
Lain E. Pardo ◽  
William Edwards ◽  
Mason J. Campbell ◽  
Bibiana Gómez-Valencia ◽  
Gopalasamy Reuben Clements ◽  
...  

AbstractThe ability of animals to adjust their behaviour can influence how they respond to environmental changes and human presence. We quantified activity patterns of terrestrial mammals in oil palm plantations and native riparian forest in Colombia to determine if species exhibited behavioural changes depending on the type of habitat and the presence of humans. Despite the large sampling effort (12,403 camera-days), we were only able to examine the activity patterns of ten species in riparian forests and seven species in oil palm plantations, with four species (capybara, giant anteater, lesser anteater and common opossum) being represented by enough records (i.e. n > 20) in both oil palm and forest to allow robust comparisons. Only capybaras showed an apparent change in activity patterns between oil palm plantations and riparian forests, shifting from being crepuscular in forest to predominantly nocturnal inside oil palm plantations. Further, capybaras, giant anteaters and white-tailed deer appeared to modify their activities to avoid human presence inside oil palm plantations by increasing nocturnality (temporal overlap $$\widehat{\Delta }$$ Δ ^ ranged from 0.13 to 0.36), whereas jaguarundi had high overlap with human activities [$$\widehat{\Delta }$$ Δ ^ =0.85 (0.61–0.90)]. Species pair-wise analysis within oil palm revealed evidence for temporal segregation between species occupying the same trophic position (e.g. foxes and jaguarundi), whereas some predators and their prey (e.g. ocelots and armadillos) had high overlaps in temporal activity patterns as might be expected. Our findings shed light on the potential behavioural adaptation of mammals to anthropogenic landscapes, a feature not captured in traditional studies that focus on measures such as species richness or abundance.


2016 ◽  
Vol 32 (6) ◽  
pp. 510-525 ◽  
Author(s):  
Sara M. Almeida ◽  
Larissa C. Silva ◽  
Maíra R. Cardoso ◽  
Pablo V. Cerqueira ◽  
Leandro Juen ◽  
...  

Abstract:Oil palm plantations are rapidly expanding in tropical areas, although the nature of the impacts on the functional roles of the different species in the ecosystem is poorly understood. The present study is the first assessment of how oil palm affects the functional diversity of birds in the Brazilian Amazon and tests the hypothesis that converting forest to oil palm decreases functional diversity of bird communities, selecting species more tolerant to environmental disturbances. We conducted point counts to survey bird communities in 16 plots in the eastern Amazon. We sampled 32 points in riparian forest, 128 in oil palm and 160 in forested habitats. To test whether the conversion of forest into oil palm plantations affects functional diversity of birds we calculated the FD (Functional Diversity) and FRic (Functional Richness) indices. To examine whether oil palm plantations select species functionally more similar than expected by chance we used a null model (SES.FD). FD was significantly higher in the forest plots in comparison with riparian forests and oil palm, and lower in oil palm when compared with riparian forests. FRic, in turn, was greater in forest plots than in oil palm and in riparian forest. These results show that the conversion of forested areas to oil palm represents a great loss of functional strategies. The SES values indicate that in forested habitats bird communities tend to be functionally clustered while in the oil palm they are functionally overdispersed. The functional traits most affected by oil palm were those associated with diet and foraging stratum. In short, oil palm plantations reduced functional diversity of birds, although the presence of riparian forests within the plantations and the fragments of forest adjacent are extremely important for the maintenance of ecosystem services.


Author(s):  
Ülo Mander ◽  
Alisa Krasnova ◽  
Thomas Schindler ◽  
J. Patrick Megonigal ◽  
Jordi Escuer-Gatius ◽  
...  

2021 ◽  
Vol 255 ◽  
pp. 108933
Author(s):  
Reinmar Seidler ◽  
Richard B. Primack ◽  
Varun R. Goswami ◽  
Sarala Khaling ◽  
M. Soubadra Devy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document