scholarly journals Genetic and Epigenetic Changes Are Rapid Responses of the Genome to the Newly Synthesized Autotetraploid Carassius auratus

2021 ◽  
Vol 11 ◽  
Author(s):  
Chongqing Wang ◽  
Yuwei Zhou ◽  
Huan Qin ◽  
Chun Zhao ◽  
Li Yang ◽  
...  

Whole genome duplication events have occurred frequently during the course of vertebrate evolution. To better understand the influence of polyploidization on the fish genome, we herein used the autotetraploid Carassius auratus (4n = 200, RRRR) (4nRR) resulting from the whole genome duplication of Carassius auratus (2n = 100, RR) (RCC) to explore the genomic and epigenetic alterations after polyploidization. We subsequently performed analyses of full-length transcriptome dataset, amplified fragment length polymorphism (AFLP) and methylation sensitive amplification polymorphism (MSAP) on 4nRR and RCC. By matching the results of 4nRR and RCC isoforms with reference genome in full-length transcriptome dataset, 649 and 1,971 novel genes were found in the RCC and 4nRR full-length geneset, respectively. Compared to Carassius auratus and Megalobrama amblycephala, 4nRR presented 3,661 unexpressed genes and 2,743 expressed genes. Furthermore, GO enrichment analysis of expressed genes in 4nRR revealed that they were enriched in meiosis I, whereas KEGG enrichment analysis displayed that they were mainly enriched in proteasome. Using AFLP analysis, we noted that 32.61% of RCC fragments had disappeared, while 32.79% of new bands were uncovered in 4nRR. Concerning DNA methylation, 4nRR exhibited a lower level of global DNA methylation than RCC. Additionally, 60.31% of methylation patterns in 4nRR were altered compared to RCC. These observations indicated that transcriptome alterations, genomic changes and regulation of DNA methylation levels and patterns had occurred in the newly established autotetraploid genomes, suggesting that genetic and epigenetic alterations were influenced by autotetraploidization. In summary, this study provides valuable novel insights into vertebrate genome evolution and generates relevant information for fish breeding.

2018 ◽  
Author(s):  
Zelin Chen ◽  
Yoshihiro Omori ◽  
Sergey Koren ◽  
Takuya Shirokiya ◽  
Takuo Kuroda ◽  
...  

SummaryFor over a thousand years throughout Asia, the common goldfish (Carassius auratus) was raised for both food and as an ornamental pet. Selective breeding over more than 500 years has created a wide array of body and pigmentation variation particularly valued by ornamental fish enthusiasts. As a very close relative of the common carp (Cyprinus carpio), goldfish shares the recent genome duplication that occurred approximately 14-16 million years ago (mya) in their common ancestor. The combination of centuries of breeding and a wide array of interesting body morphologies is an exciting opportunity to link genotype to phenotype as well as understanding the dynamics of genome evolution and speciation. Here we generated a high-quality draft sequence of a “Wakin” goldfish using 71X PacBio long-reads. We identified 70,324 coding genes and more than 11,000 non-coding transcripts. We found that the two sub-genomes in goldfish retained extensive synteny and collinearity between goldfish and zebrafish. However, “ohnologous” genes were lost quickly after the carp whole-genome duplication, and the expression of 30% of the retained duplicated gene diverged significantly across seven tissues sampled. Loss of sequence identity and/or exons determined the divergence of the expression across all tissues, while loss of conserved, non-coding elements determined expression variance between different tissues. This draft assembly also provides an important resource for comparative genomics with the very commonly used zebrafish model (Danio rerio), and for understanding the underlying genetic causes of goldfish variants.


2019 ◽  
Vol 5 (6) ◽  
pp. eaav0547 ◽  
Author(s):  
Zelin Chen ◽  
Yoshihiro Omori ◽  
Sergey Koren ◽  
Takuya Shirokiya ◽  
Takuo Kuroda ◽  
...  

For over a thousand years, the common goldfish (Carassius auratus) was raised throughout Asia for food and as an ornamental pet. As a very close relative of the common carp (Cyprinus carpio), goldfish share the recent genome duplication that occurred approximately 14 million years ago in their common ancestor. The combination of centuries of breeding and a wide array of interesting body morphologies provides an exciting opportunity to link genotype to phenotype and to understand the dynamics of genome evolution and speciation. We generated a high-quality draft sequence and gene annotations of a “Wakin” goldfish using 71X PacBio long reads. The two subgenomes in goldfish retained extensive synteny and collinearity between goldfish and zebrafish. However, genes were lost quickly after the carp whole-genome duplication, and the expression of 30% of the retained duplicated gene diverged substantially across seven tissues sampled. Loss of sequence identity and/or exons determined the divergence of the expression levels across all tissues, while loss of conserved noncoding elements determined expression variance between different tissues. This assembly provides an important resource for comparative genomics and understanding the causes of goldfish variants.


2016 ◽  
Author(s):  
Julien Roux ◽  
Jialin Liu ◽  
Marc Robinson-Rechavi

AbstractThe evolutionary history of vertebrates is marked by three ancient whole-genome duplications: two successive rounds in the ancestor of vertebrates, and a third one specific to teleost fishes. Biased loss of most duplicates enriched the genome for specific genes, such as slow evolving genes, but this selective retention process is not well understood. To understand what drives the long-term preservation of duplicate genes, we characterized duplicated genes in terms of their expression patterns. We used a new method of expression enrichment analysis, TopAnat, applied to in situ hybridization data from thousands of genes from zebrafish and mouse. We showed that the presence of expression in the nervous system is a good predictor of a higher rate of retention of duplicate genes after whole-genome duplication. Further analyses suggest that purifying selection against the toxic effects of misfolded or misinteracting proteins, which is particularly strong in non-renewing neural tissues, likely constrains the evolution of coding sequences of nervous system genes, leading indirectly to the preservation of duplicate genes after whole-genome duplication. Whole-genome duplications thus greatly contributed to the expansion of the toolkit of genes available for the evolution of profound novelties of the nervous system at the base of the vertebrate radiation.


Genetics ◽  
2000 ◽  
Vol 156 (3) ◽  
pp. 1249-1257
Author(s):  
Ilya Ruvinsky ◽  
Lee M Silver ◽  
Jeremy J Gibson-Brown

Abstract The duplication of preexisting genes has played a major role in evolution. To understand the evolution of genetic complexity it is important to reconstruct the phylogenetic history of the genome. A widely held view suggests that the vertebrate genome evolved via two successive rounds of whole-genome duplication. To test this model we have isolated seven new T-box genes from the primitive chordate amphioxus. We find that each amphioxus gene generally corresponds to two or three vertebrate counterparts. A phylogenetic analysis of these genes supports the idea that a single whole-genome duplication took place early in vertebrate evolution, but cannot exclude the possibility that a second duplication later took place. The origin of additional paralogs evident in this and other gene families could be the result of subsequent, smaller-scale chromosomal duplications. Our findings highlight the importance of amphioxus as a key organism for understanding evolution of the vertebrate genome.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Gareth B. Gillard ◽  
Lars Grønvold ◽  
Line L. Røsæg ◽  
Matilde Mengkrog Holen ◽  
Øystein Monsen ◽  
...  

Abstract Background Whole genome duplication (WGD) events have played a major role in eukaryotic genome evolution, but the consequence of these extreme events in adaptive genome evolution is still not well understood. To address this knowledge gap, we used a comparative phylogenetic model and transcriptomic data from seven species to infer selection on gene expression in duplicated genes (ohnologs) following the salmonid WGD 80–100 million years ago. Results We find rare cases of tissue-specific expression evolution but pervasive expression evolution affecting many tissues, reflecting strong selection on maintenance of genome stability following genome doubling. Ohnolog expression levels have evolved mostly asymmetrically, by diverting one ohnolog copy down a path towards lower expression and possible pseudogenization. Loss of expression in one ohnolog is significantly associated with transposable element insertions in promoters and likely driven by selection on gene dosage including selection on stoichiometric balance. We also find symmetric expression shifts, and these are associated with genes under strong evolutionary constraints such as ribosome subunit genes. This possibly reflects selection operating to achieve a gene dose reduction while avoiding accumulation of “toxic mutations”. Mechanistically, ohnolog regulatory divergence is dictated by the number of bound transcription factors in promoters, with transposable elements being one likely source of novel binding sites driving tissue-specific gains in expression. Conclusions Our results imply pervasive adaptive expression evolution following WGD to overcome the immediate challenges posed by genome doubling and to exploit the long-term genetic opportunities for novel phenotype evolution.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Amit Rai ◽  
Hideki Hirakawa ◽  
Ryo Nakabayashi ◽  
Shinji Kikuchi ◽  
Koki Hayashi ◽  
...  

AbstractPlant genomes remain highly fragmented and are often characterized by hundreds to thousands of assembly gaps. Here, we report chromosome-level reference and phased genome assembly of Ophiorrhiza pumila, a camptothecin-producing medicinal plant, through an ordered multi-scaffolding and experimental validation approach. With 21 assembly gaps and a contig N50 of 18.49 Mb, Ophiorrhiza genome is one of the most complete plant genomes assembled to date. We also report 273 nitrogen-containing metabolites, including diverse monoterpene indole alkaloids (MIAs). A comparative genomics approach identifies strictosidine biogenesis as the origin of MIA evolution. The emergence of strictosidine biosynthesis-catalyzing enzymes precede downstream enzymes’ evolution post γ whole-genome triplication, which occurred approximately 110 Mya in O. pumila, and before the whole-genome duplication in Camptotheca acuminata identified here. Combining comparative genome analysis, multi-omics analysis, and metabolic gene-cluster analysis, we propose a working model for MIA evolution, and a pangenome for MIA biosynthesis, which will help in establishing a sustainable supply of camptothecin.


Sign in / Sign up

Export Citation Format

Share Document