scholarly journals Whole Blood Holding Time Prior to Plasma Processing Alters microRNA Expression Profile

2022 ◽  
Vol 12 ◽  
Author(s):  
Sung Hye Kim ◽  
David A. MacIntyre ◽  
Lynne Sykes ◽  
Maria Arianoglou ◽  
Phillip R. Bennett ◽  
...  

MicroRNAs (miRNAs) can exhibit aberrant expression under different physiological and pathological conditions. Therefore, differentially expressed circulating miRNAs have been a focus of biomarker discovery research. However, the use of circulating miRNAs comes with challenges which may hinder the reliability for their clinical application. These include varied sample collection protocols, storage times/conditions, sample processing and analysis methods. This study focused on examining the effect of whole blood holding time on the stability of plasma miRNA expression profiles. Whole blood samples were collected from healthy pregnant women and were held at 4°C for 30 min, 2 h, 6 h or 24 h prior to processing for plasma isolation. Plasma RNA was extracted and the expression of 179 miRNAs were analyzed. Unsupervised principal component analysis demonstrated that whole blood holding time was a major source of variation in miRNA expression profiles with 53 of 179 miRNAs showing significant changes in expression. Levels of specific miRNAs previously reported to be associated with pregnancy-associated complications such as hsa-miR-150-5p, hsa-miR-191-5p, and hsa-miR-29a-3p, as well as commonly used endogenous miRNA controls, hsa-miR-16-5p, hsa-miR-25-3p, and hsa-miR-223-3p were significantly altered with increase in blood holding time. Current protocols for plasma-based miRNA profiling for diagnostics describe major differences in whole blood holding periods ranging from immediately after collection to 26 h after. Our results demonstrate holding time can have dramatic effects on analytical reliability and reproducibility. This highlights the importance of standardization of blood holding time prior to processing for plasma in order to minimize introduction of non-biological variance in miRNA profiles.

Author(s):  
Jocelyn M Cuthbert ◽  
Stewart J Russell ◽  
Irina A Polejaeva ◽  
Qinggang Meng ◽  
Kenneth L White ◽  
...  

Abstract Production of embryos with high developmental competence by somatic cell nuclear transfer (scNT) is far less efficient than for in vitro fertilized (IVF) embryos, likely due to an accumulation of errors in genome reprogramming that results in aberrant expression of RNA transcripts, including messenger RNAs (mRNA) and, possibly, microRNAs (miRNA). Thus, our objectives were to use RNAseq to determine the dynamics of mRNA expression in early developing scNT and IVF embryos in the context of the maternal-to-embryonic transition (MET) and to correlate apparent transcriptional dysregulation in cloned embryos with miRNA expression profiles. Comparisons between scNT and IVF embryos indicated large scale transcriptome differences, which were most evident at the 8-cell and morula stages for genes associated with biological functions critical for the MET. For two miRNAs previously identified as differentially expressed in scNT morulae, miR-34a and miR-345, negative correlations with some predicted mRNA targets were apparent, though not widespread among the majority of predicted targets. Moreover, although large-scale aberrations in expression of mRNAs were evident during the MET in cattle scNT embryos, these changes were not consistently correlated with aberrations in miRNA expression at the same developmental stage, suggesting that other mechanisms controlling gene expression may be involved.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
P. Laudanski ◽  
R. Charkiewicz ◽  
A. Tolwinska ◽  
J. Szamatowicz ◽  
A. Charkiewicz ◽  
...  

It has been well documented that aberrant expression of selected microRNAs (miRNAs) might contribute to the pathogenesis of disease. The aim of the present study is to compare miRNA expression by the most comprehensive locked-nucleic acid (LNA) miRNA microarray in eutopic endometrium of patients with endometriosis and control. In the study we recruited 21 patients with endometriosis and 25 were disease-free women. The miRNA expression profiles were determined using the LNA miRNA microarray and validated for selected molecules by real-time PCR. We identified 1198 human miRNAs significantly differentially altered in endometriosis versus control samples using false discovery rate of <5%. However only 136 miRNAs showed differential regulation by fold change of at least 1.3. By the use of selected statistical analysis we obtained 45 potential pathways that might play a role in the pathogenesis of endometriosis. We also found that natural killer cell mediated cytotoxicity pathway was found to be inhibited which is consistent with previous studies. There are several pathways that may be potentially dysregulated, due to abnormal miRNA expression, in eutopic endometrium of patients with endometriosis and in this way contribute to its pathogenesis.


2020 ◽  
Vol 21 (7) ◽  
pp. 722-734
Author(s):  
Adele Soltani ◽  
Arefeh Jafarian ◽  
Abdolamir Allameh

micro (mi)-RNAs are vital regulators of multiple processes including insulin signaling pathways and glucose metabolism. Pancreatic &#946;-cells function is dependent on some miRNAs and their target mRNA, which together form a complex regulative network. Several miRNAs are known to be directly involved in &#946;-cells functions such as insulin expression and secretion. These small RNAs may also play significant roles in the fate of &#946;-cells such as proliferation, differentiation, survival and apoptosis. Among the miRNAs, miR-7, miR-9, miR-375, miR-130 and miR-124 are of particular interest due to being highly expressed in these cells. Under diabetic conditions, although no specific miRNA profile has been noticed, the expression of some miRNAs and their target mRNAs are altered by posttranscriptional mechanisms, exerting diverse signs in the pathobiology of various diabetic complications. The aim of this review article is to discuss miRNAs involved in the process of stem cells differentiation into &#946;-cells, resulting in enhanced &#946;-cell functions with respect to diabetic disorders. This paper will also look into the impact of miRNA expression patterns on in vitro proliferation and differentiation of &#946;-cells. The efficacy of the computational genomics and biochemical analysis to link the changes in miRNA expression profiles of stem cell-derived &#946;-cells to therapeutically relevant outputs will be discussed as well.


Author(s):  
Michela Bulfoni ◽  
Riccardo Pravisani ◽  
Emiliano Dalla ◽  
Daniela Cesselli ◽  
Masaaki Hidaka ◽  
...  

Author(s):  
Wenhui Huang ◽  
Xuefeng Gu ◽  
Yingying Wang ◽  
Yuhan Bi ◽  
Yu. Yang ◽  
...  

2017 ◽  
Vol 50 (1) ◽  
Author(s):  
Guankui Du ◽  
Man Xiao ◽  
Xuezi Zhang ◽  
Maoyu Wen ◽  
Chi Pang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document